On global attraction to quantum stationary states. Dirac equation with mean field interaction. (English) Zbl 1211.35053

Summary: We consider a \(\mathbb{U}(1)\)-invariant nonlinear Dirac equation, interacting with itself via the mean field mechanism. We analyze the long-time asymptotics of solutions and prove that, under certain generic assumptions, each finite charge solution converges as \(t\to\pm\infty\) to the two-dimensional set of all “nonlinear eigenfunctions” of the form \(\phi(x)e^{-i\omega t}\). This global attraction is caused by the nonlinear energy transfer from lower harmonics to the continuous spectrum and subsequent dispersive radiation. The research is inspired by Bohr’s postulate on quantum transitions and Schrödinger’s identification of the quantum stationary states to the nonlinear eigenfunctions of the coupled \(\mathbb{U}(1)\)-invariant Maxwell-Schrödinger and Maxwell-Dirac equations.


35B41 Attractors
35Q41 Time-dependent Schrödinger equations and Dirac equations
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
37L30 Attractors and their dimensions, Lyapunov exponents for infinite-dimensional dissipative dynamical systems
37N20 Dynamical systems in other branches of physics (quantum mechanics, general relativity, laser physics)
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
Full Text: arXiv Euclid


[1] N. Bohr, On the constitution of atoms and molecules. Phil. Mag. 26 (1913), pp 1-25. · JFM 44.0897.01
[2] N. Bournaveas, Local existence for the Maxwell-Dirac equations in three space dimensions. Comm. Partial Differential Equations 21 (1996), pp 693-720. · Zbl 0880.35116
[3] V. S. Buslaev and C. Sulem, On asymptotic stability of solitary waves for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), pp 419-475. · Zbl 1028.35139
[4] M. Chugunova and D. Pelinovsky, Block-diagonalization of the symmetric first-order coupled-mode system. SIAM J. Appl. Dyn. Syst. 5 (2006), pp 66-83. · Zbl 1102.35062
[5] S. Cuccagna, On asymptotic stability in energy space of ground states of NLS in 1D. J. Differential Equations 245 (2008), pp 653-691. · Zbl 1185.35251
[6] T. Cazenave and L. Vázquez, Existence of localized solutions for a classical nonlinear Dirac field. Comm. Math. Phys. 105 (1986), pp 35-47. · Zbl 0596.35117
[7] M. J. Esteban, V. Georgiev, and E. Séré, Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations. Calc. Var. Partial Differential Equations 4 (1996), pp 265-281. · Zbl 0869.35105
[8] D. J. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field theories. Phys. Rev. D 10 (1974), pp 3235-3253.
[9] Y. Guo, K. Nakamitsu, and W. Strauss, Global finite-energy solutions of the Maxwell-Schrödinger system. Comm. Math. Phys. 170 (1995), pp 181-196. · Zbl 0830.35131
[10] M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I J. Funct. Anal. 74 (1987), pp 160-197. · Zbl 0656.35122
[11] A. I. Komech and A. A. Komech, Global attractor for a nonlinear oscillator coupled to the Klein-Gordon field. Arch. Ration. Mech. Anal. 185 (2007), pp 105-142. · Zbl 1131.35003
[12] A. I. Komech and A. A. Komech, Global attraction to solitary waves for Klein-Gordon equation with mean field interaction. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2008), pp 855-868. · Zbl 1177.35201
[13] A. I. Komech and A. A. Komech, Global attractor for the Klein-Gordon field coupled to several nonlinear oscillators. J. Math. Pures Appl. 93 (2010), pp 91-111. · Zbl 1180.35124
[14] A. I. Komech, On stabilization of string-nonlinear oscillator interaction. J. Math. Anal. Appl. 196 (1995), pp 384-409. · Zbl 0859.35076
[15] A. I. Komech, On transitions to stationary states in one-dimensional nonlinear wave equations. Arch. Ration. Mech. Anal. 149 (1999), pp 213-228. · Zbl 0939.35030
[16] A. I. Komech and H. Spohn, Long-time asymptotics for the coupled Maxwell-Lorentz equations. Comm. Partial Differential Equations 25 (2000), pp 559-584. · Zbl 0970.35149
[17] A. I. Komech, H. Spohn, and M. Kunze, Long-time asymptotics for a classical particle interacting with a scalar wave field. Comm. Partial Differential Equations 22 (1997), pp 307-335. · Zbl 0878.35094
[18] S. Y. Lee and A. Gavrielides, Quantization of the localized solutions in two-dimensional field theories of massive fermions. Phys. Rev. D 12 (1975), pp 3880-3886.
[19] C. S. Morawetz and W. A. Strauss, Decay and scattering of solutions of a nonlinear relativistic wave equation. Comm. Pure Appl. Math. 25 (1972), pp 1-31. · Zbl 0228.35055
[20] E. Schrödinger, Quantisierung als eigenwertproblem. Ann. d. Phys. 79 (1926), pp 361-376. · JFM 52.0965.08
[21] E. Schrödinger, Quantisierung als eigenwertproblem. Ann. d. Phys. 81 (1926), p. 109. · JFM 52.0965.08
[22] L. I. Schiff, Nonlinear meson theory of nuclear forces. I. Neutral scalar mesons with point-contact repulsion. Phys. Rev. 84 (1951), pp 1-9. · Zbl 0054.08305
[23] I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction. Bull. Soc. Math. France 91 (1963), pp 129-135. · Zbl 0178.45403
[24] W. A. Strauss, Decay and asymptotics for \(\square u = f(u)\). J. Functional Analysis 2 (1968), pp 409-457. · Zbl 0182.13602
[25] W. A. Strauss and L. Vázquez, Stability under dilations of nonlinear spinor fields. Phys. Rev. D (3) 34 (1986), pp 641-643. · Zbl 1222.81167
[26] E. Titchmarsh, The zeros of certain integral functions. Proc. of the London Math. Soc. 25 (1926), pp 283-302. · JFM 52.0334.03
[27] K. Yosida, Functional Analysis . 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin 1980, sixth edn.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.