Homogenization and dispersion effects in the problem of propagation of waves generated by a localized source. (English. Russian original) Zbl 1293.35279

Proc. Steklov Inst. Math. 281, 161-178 (2013); translation from Tr. Mat. Inst. Steklova 281, 170-187 (2013); corrigendum Proc. Steklov Inst. Math. 288, 265 (2015); translation from Tr. Mat. Inst. Steklova 288, 287 (2015).
Homogenization methods are effectively used in linear partial differential equations with rapidly oscillating coefficients and smooth coefficients at leading terms for the construction of their asymptotic solutions. The aim of this article is to modify the homogenization method when the leading term is also rapidly oscillating on the example of the Cauchy problem with rapidly decreasing initial data for the wave equation in the plane \(\mathbb R^2_x\) with oscillating coefficients \[ u_{tt}=\left\langle \nabla, C^2\left(\frac{\theta(x)}{\varepsilon},x\right)\nabla\right\rangle u,\;x=x_1,x_2; \;u(x,0)=V\left(\frac{x}{\mu}\right),\;u_t(x,0)=0. \] Here \(\theta(x)=(\theta_1,\theta_2),\; C(y,x)\) are smooth, \(C^2(y,x)>\kappa_0>0\) is \(2\pi\)-periodic on \(y\) with some additional assumptions, \( \varepsilon \) and \(\mu=\varepsilon ^{\kappa}\), \(1>\kappa \geq 0\) are small parameters characterizing the oscillation rate and the decay in initial data. Such problems arise in the study of the propagation of tsunami waves.
The asymptotic solution of such problems has dispersion effects that are studied here by means of a modified Maslov canonical operator. As a result, the constructed asymptotic solution expressed through the Airy functions allows one to investigate the effect of fast velocity oscillations on the solution fronts.
For a corrigendum see ibid. 288, Article ID 6892, 265 (2015); translation from Tr. Mat. Inst. Steklova 288, 287 (2015; Zbl 1321.35198).


35Q53 KdV equations (Korteweg-de Vries equations)
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35Q35 PDEs in connection with fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction


Zbl 1321.35198
Full Text: DOI


[1] N. S. Bakhvalov and G. P. Panasenko, Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials (Nauka, Moscow, 1984; Kluwer, Dordrecht, 1989). · Zbl 0607.73009
[2] V. V. Zhikov, S. M. Kozlov, and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals (Fizmatlit, Moscow, 1993; Springer, Berlin, 1994).
[3] V. A. Marchenko and E. Ya. Khruslov, Homogenized Models of Microinhomogeneous Media (Fiz.-Tekh. Inst. Nizk. Temp. im. B.I. Verkina, Nats. Akad. Nauk Ukr., Kharkov, 2003) [in Russian].
[4] A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures (North-Holland, Amsterdam, 1978). · Zbl 0404.35001
[5] E. N. Pelinovskii, Hydrodynamics of Tsunami Waves (Inst. Prikl. Fiz., Nizhni Novgorod, 1996) [in Russian].
[6] S. Yu. Dobrokhotov, A. I. Shafarevich, and B. Tirozzi, ”Localized wave and vortical solutions to linear hyperbolic systems and their application to linear shallow water equations,” Russ. J. Math. Phys. 15(2), 192–221 (2008). · Zbl 1180.35336
[7] S. Yu. Dobrokhotov, B. Tirozzi, and C. A. Vargas, ”Behavior near the focal points of asymptotic solutions to the Cauchy problem for the linearized shallow water equations with initial localized perturbations,” Russ. J. Math. Phys. 16(2), 228–245 (2009). · Zbl 1178.35301
[8] S. Yu. Dobrokhotov, R. V. Nekrasov, and B. Tirozzi, ”Asymptotic solutions of the linear shallow-water equations with localized initial data,” J. Eng. Math. 69(2–3), 225–242 (2011). · Zbl 1325.76036
[9] J. Brüning, V. V. Grushin, and S. Yu. Dobrokhotov, ”Averaging of linear operators, adiabatic approximation, and pseudodifferential operators,” Mat. Zametki 92(2), 163–180 (2012) [Math. Notes 92, 151–165 (2012)]. · Zbl 1282.47079
[10] A. G. Kulikovskii and A. P. Chugainova, Classical and Nonclassical Discontinuities and Their Structures in Nonlinear Elastic Media with Dispersion and Dissipation (Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk, Moscow, 2007), Sovrem. Probl. Mat. 7 [Proc. Steklov Inst. Math. 276 (Suppl. 2), 1–68 (2012)].
[11] A. G. Kulikovskii and A. P. Chugainova, ”Self-similar asymptotics describing nonlinear waves in elastic media with dispersion and dissipation,” Zh. Vychisl. Mat. Mat. Fiz. 50(12), 2261–2274 (2010) [Comput. Math. Math. Phys. 50, 2145–2156 (2010)]. · Zbl 1224.74055
[12] S. F. Dotsenko, B. Yu. Sergeevskii, and L. V. Cherkesov, ”Spatial tsunami waves caused by the alternating displacement of the ocean surface,” in Tsunami Research (Mezhduved. Geofiz. Komitet, Moscow, 1986), Issue 1, pp. 7–14 [in Russian].
[13] S. Wang, ”The propagation of the leading wave,” in Coastal Hydrodynamics: Proc. ASCE Specialty Conf., Univ. Delaware, June 28–July 1, 1987 (ASCE, New York, 1987), pp. 657–670.
[14] S. Yu. Dobrokhotov, B. I. Volkov, S. Ya. Sekerzh-Zenkovich, and B. Tirozzi, ”Asymptotic description for tsunami waves in framework of the piston model: General construction and explicit solvable cases,” Fund. Prikl. Geofiz., No. 2, 15–29 (2009).
[15] S. Yu. Dobrokhotov and S. Ya. Sekerzh-Zen’kovich, ”A class of exact algebraic localized solutions of the multidimensional wave equation,” Mat. Zametki 88(6), 942–945 (2010) [Math. Notes 88, 894–897 (2010)].
[16] V. P. Maslov, Operational Methods (Nauka, Moscow, 1973; Mir, Moscow, 1976).
[17] V. V. Belov, S. Yu. Dobrokhotov, and T. Ya. Tudorovskiy, ”Operator separation of variables for adiabatic problems in quantum and wave mechanics,” J. Eng. Math. 55(1–4), 183–237 (2006). · Zbl 1110.81080
[18] V. P. Maslov, Perturbation Theory and Asymptotic Methods (Mosk. Gos. Univ., Moscow, 1965) [in Russian].
[19] V. P. Maslov and M. V. Fedoryuk, Semi-classical Approximation in Quantum Mechanics (Nauka, Moscow, 1976; D. Reidel, Dordrecht, 1981). · Zbl 0449.58002
[20] S. Yu. Dobrokhotov, ”Application of the Maslov theory to two problems for equations with operator-valued symbol: Electron-phonon interaction and the Schrödinger equation with rapidly oscillating potential,” Usp. Mat. Nauk 39(4), 125 (1984).
[21] L. V. Berlyand and S. Yu. Dobrokhotov, ”’Operator separation of variables’ in problems of short-wave asymptotic behavior for differential equations with fast oscillating coefficients,” Dokl. Akad. Nauk SSSR 296(1), 80–84 (1987) [Sov. Phys., Dokl. 32, 714–716 (1987)]. · Zbl 0671.35013
[22] V. S. Buslaev, ”Semiclassical approximation for equations with periodic coefficients,” Usp. Mat. Nauk 42(6), 77–98 (1987) [Russ. Math. Surv. 42 (6), 97–125 (1987)]. · Zbl 0698.35130
[23] E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2: Theory of the Condensed State (Nauka, Moscow, 1978; Butterworth-Heinemann, Oxford, 1980).
[24] V. V. Grushin and S. Yu. Dobrokhotov, ”Peierls substitution and the Maslov operator method,” Mat. Zametki 87(4), 554–571 (2010) [Math. Notes 87, 521–536 (2010)]. · Zbl 1197.35086
[25] J. Brüning, V. V. Grushin, S. Yu. Dobrokhotov, and T. Ya. Tudorovskii, ”Generalized Foldy-Wouthuysen transformation and pseudodifferential operators,” Teor. Mat. Fiz. 167(2), 171–192 (2011) [Theor. Math. Phys. 167, 547–566 (2011)]. · Zbl 1274.81069
[26] T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1966; Mir, Moscow, 1972). · Zbl 0148.12601
[27] V. A. Borovikov and M. Ya. Kel’bert, ”The field near the wave front in a Cauchy-Poisson problem,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 173–174 (1984) [Fluid Dyn. 19, 321–323 (1984)].
[28] S. Ya. Sekerzh-Zenkovich, ”Simple asymptotic solution of the Cauchy-Poisson problem for head waves,” Russ. J. Math. Phys. 16(2), 315–322 (2009). · Zbl 1179.35248
[29] M. V. Fedoryuk, Asymptotic Analysis: Linear Ordinary Differential Equations (Nauka, Moscow, 1983; Springer, Berlin, 1993). · Zbl 0538.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.