Sharp Lieb-Thirring inequalities in high dimensions. (English) Zbl 1142.35531

From the introduction: Let us consider a Schrödinger operator in \(L^2(\mathbb R^d)\), \(-\Delta+V\), where \(V\) is a real-valued function. E. H. Lieb and W. E. Thirring [Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. Stud. math. Phys., Essays Honor Valentine Bargmann, 269–303 (1976; Zbl 0342.35044)] proved that if \(\gamma>\max(0,1-\frac12 d)\), then there exist universal constants \(L_{\gamma,d}\) satisfying
\[ \text{tr}(-\Delta+V)_-^\gamma\leq L_{\gamma,d} \int_{\mathbb R^d} V_-^{\gamma+d/2}(x)\,dx. \]
The main purpose of this paper is to verify \(L_{\gamma,d}= L_{\gamma,d}^{\text{cl}}\) for any \(\gamma\geq \frac32\), \(d\in\mathbb N\) and any \(V\in L^{\gamma+d/2}(\mathbb R^d)\).


35P15 Estimates of eigenvalues in context of PDEs
35J10 Schrödinger operator, Schrödinger equation
47F05 General theory of partial differential operators
81U05 \(2\)-body potential quantum scattering theory


Zbl 0342.35044
Full Text: DOI arXiv


[1] Aizenmann, M. &Lieb, E. H., On semi-classical bounds for eigenvalues of Schrödinger operators.Phys. Lett. A, 66 (1978), 427–429.
[2] Berezin, F. A., Covariant and contravariant symbols of operators.Izv. Akad. Nauk SSSR Ser. Mat., 36 (1972), 1134–1167 (Russian); English translation inMath. USSR-Izv., 6 (1972), 1117–1151.
[3] –, Conve functions of operators,Mat. Sb. (N.S.), 88 (130) (1972), 268–276.
[4] Blanchard, Ph. &Stubbe, J.,Bound states for Schrödinger Hamiltonians: phase space methods and applications.Rev. Math. Phys., 8 (1996), 503–547. · Zbl 0859.35101
[5] Bretèche, R. de la, Preuve de la conjecture de Lieb-Thirring dans le cas des potentiels quadratiques strictement convexes.Ann. Inst. H. Poincaré Phys. Théor., 70 (1999), 369–380. · Zbl 0938.35148
[6] Buslaev, V. S. &Faddeev, L. D., Formulas for traces for a singular Sturm-Liouville differential operator.Dokl. Akad. Nauk SSSR, 132 (1960), 13–16 (Russian); English translation inSoviet Math. Dokl., 1 (1960), 451–454. · Zbl 0129.06501
[7] Conlon, J. G., A new proof of the Cwikel-Lieb-Rosenbljum bound.Rocky Mountain J. Math., 15 (1985), 117–122. · Zbl 0581.35014
[8] Cwikel, M., Weak type estimates for singular values and the number of bound states of Schrödinger operators.Ann. of Math., 106 (1977), 93–100. · Zbl 0362.47006
[9] Faddeev, L. D. &Zakharov, V. E., The Korteweg-de Vries equation is a completely integrable Hamiltonian system.Funktsional. Anal. i Prilozhen., 5 (1971), 18–27 (Russian); English translation inFunctional Anal. Appl., 5 (1971), 280–287.
[10] Glaser, V., Grosse, H. &Martin, A., Bounds on the number of eigenvalues of the Schrödinger operator.Comm. Math. Phys., 59 (1978), 197–212. · Zbl 0373.35050
[11] Helffer, B., Private communication.
[12] Helffer, B. &Robert, D., Riesz means of bounded states and semi-classical limit connected with a Lieb-Thirring conjecture, I; II.Asymptotic Anal., 3 (1990), 91–103;Ann. Inst. H. Poincaré Phys. Théor., 53 (1990), 139–147. · Zbl 0717.35062
[13] Hundertmark, D., Laptev, A. & Weidl, T., New bounds on the Lieb-Thirring constants. To appear inInvent. Math.
[14] Hundertmark, D., Lieb, E. H. &Thomas, L. E., A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator.Adv. Theor. Math. Phys., 2 (1998), 719–731. · Zbl 0929.34076
[15] Kato, T., Schrödinger operators with singular potentials.Israel J. Math., 13 (1973), 135–148. · Zbl 0246.35025
[16] Laptev, A., Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces.J. Funct. Anal., 151 (1997), 531–545. · Zbl 0892.35115
[17] –, On inequalities for the bound states of Schrödinger operators, inPartial Differential Operators and Mathematical Physics (Holzhau, 1994), pp. 221–225. Oper. Theory Adv. Appl., 78, Birkhäuser, Basel, 1995.
[18] Laptev, A. &Safarov, Yu., A generalization of the Berezin-Lieb inequality, inContemporary Mathematical Physics, pp. 69–79. Amer. Math. Soc. Transl. Ser. 2, 175 Amer. Math. Soc., Providence, RI, 1996. · Zbl 0868.47016
[19] Li, P. &Yau, S.-T., On the Schrödinger equation and the eigenvalue problem.Comm. Math. Phys., 88 (1983), 309–318. · Zbl 0554.35029
[20] Lieb, E. H., Bounds on the eigenvalues of the Laplace and Schrödinger operators.Bull. Amer. Math. Soc., 82 (1976), 751–753; See also: The number of bound states of one-body Schrödinger operators and the Weyl problem, inGeometry of the Laplace Operator (Honolulu, HI, 1979), pp. 241–252. Proc. Sympos. Pure Math., 36. Amer. Math. Soc., Providence, RI, 1980. · Zbl 0329.35018
[21] –, The classical limit of quantum spin systems.Comm. Math. Phys., 31 (1973), 327–340. · Zbl 1125.82305
[22] –, On characteristic exponents in turbulence.Comm. Math. Phys., 82 (1984), 473–480. · Zbl 0598.76054
[23] Lieb, E. H. &Thirring, W., Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, inStudies in Mathematical Physics (Essays in Honor of Valentine Bargmann), pp. 269–303. Princeton Univ. Press, Princeton, NJ, 1976. · Zbl 0342.35044
[24] Pólya, G., On the eigenvalues of vibrating membranes.Proc. London Math. Soc., 11 (1961), 419–433. · Zbl 0107.41805
[25] Rozenblum, G. V., Distribution of the discrete spectrum of singular differential operators.Dokl. Akad. Nauk SSSR, 202 (1972), 1012–1015 (Russian);Izv. Vyssh. Uchebn. Zaved. Mat., 1976: 1, 75–86 (Russian).
[26] Simon, B., Maximal and minimal Schrödinger forms.J. Operator Theory, 1 (1979), 37–47. · Zbl 0446.35035
[27] Weidl, T., On the Lieb-Thirring constantsL {\(\gamma\)}, 1 for \(\gamma \geqslant \tfrac{1}{2}\) .Comm. Math. Phys., 178 (1996), 135–146. · Zbl 0858.34075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.