×

The cosmological constant as a consequence of the evolution of space. (English. Russian original) Zbl 1380.83297

Russ. Phys. J. 59, No. 8, 1171-1180 (2016); translation from Izv. Vyssh. Uchebn. Zaved., Fiz. 59, No. 8, 40-48 (2016).
Summary: Conditions are considered in various approaches, determining the dimensionality of a space in which specific physical interactions are described. The dimensionality of the Universe does not necessarily have a fixed value. The cosmological constant is interpreted as the energy density being released in the remaining dimensions when the dimensionality of space is decreased.

MSC:

83F05 Relativistic cosmology
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Yu. S. Vladimirov, Geometrophysics [in Russian], BINOM, Laboratoriya Znanii, Moscow (2005).
[2] B. A. Zwiebach, First Course in String Theory, Cambridge University Press (2004) · Zbl 1072.81001
[3] Yu. S. Vladimirov, Dimensionality of Physical Spacetime and Unification of Interactions [in Russian], Moscow University Press, Moscow (1987).
[4] C. Møller, The Theory of Relativity, Clarendon Press, Oxford (1952). · Zbl 0047.20602
[5] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman, New York (1973).
[6] A. A. Logunov, Lectures on the Theory of Relativity and Gravitation [in Russian], Moscow University Press, Moscow (1985).
[7] Yu. S. Vladimirov, Metaphysics [in Russian], BINOM, Laboratoriya Znanii, Moscow (2002).
[8] Academician A. D. Sakharov, Scientific Works [in Russian], Tsentrkom, Moscow (1995).
[9] M. J. Duff, P. S. Howe, T. Inami, and K. S. Stelle, Phys. Lett., B191, No. 1-2, 70-74 (1987).
[10] Ya. B. Zel’dovich and I. D. Novikov, Structure and the Evolution of the Universe [in Russian], Nauka, Moscow (1975).
[11] G. G. Byrd, A. D. Chernin, and M. J. Valtonen, Cosmology. Foundations and Frontiers, Editorial URSS, Moscow (2007).
[12] P. D. Nasel’skii, D. I. Novikov, and I. D. Novikov, Relict Radiation of the Universe [in Russian], Nauka, Moscow (2003).
[13] S. Weinberg, Cosmology, Oxford University Press, Oxford (2008). · Zbl 1147.83002
[14] M. Milgrom, in: Poiski Mekhanizma Gravitatsii, M. A. Ivanov and P. A. Savrov, eds., Izdatel Yu. A. Nikolaev, Nizhnii Novgorod (2004), pp. 197-214 (astro-ph/9810302).
[15] V. S. Buslaev, Variational Calculus [in Russian], Publishing House of Leningrad State University, Leningrad (1980). · Zbl 0489.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.