×

Supersymmetric solutions of \({\mathcal PT}\)-/non-\({\mathcal PT}\)-symmetric and non-Hermitian central potentials via Hamiltonian hierarchy method. (English) Zbl 1100.81028

Summary: The supersymmetric solutions of \({\mathcal PT}\)-/non-\({\mathcal PT}\)-symmetric and non-Hermitian deformed Morse and Pöschl-Teller potentials are obtained by solving the Schrödinger equation. The Hamiltonian hierarchy method is used to get the real energy eigenvalues and corresponding eigenfunctions.

MSC:

81Q60 Supersymmetry and quantum mechanics
82B30 Statistical thermodynamics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81V55 Molecular physics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] C.M. Bender and S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243; C.M. Bender, J. Math. Phys. 40 (1999) 2201; C.M. Bender, D.C. Brody and H.F. Jones, Phys. Rev. Lett. 89 (2002) 270401; C.M. Bender, P.N. Meisinger and Q. Wang, J. Phys. A 36 (2003) 6791; C.M. Bender, D.C. Brody and H.F. Jones, Am. J. Phys. 71 (2003) 1095; C.M. Bender, P.N. Meisinger and Q. Wang, J. Phys. A 36 (2003) 1029; C.M. Bender, M.V. Berry and A. Mandilara, J. Phys. A 35 (2002) L467.
[2] Mostafazadeh A., J. Math. Phys. 43 (2002) 205, ibid 43 (2002) 2814, ibid 43 (2002) 3944; J. Phys. A 36 (2003) 7081. · Zbl 1060.81022
[3] Ahmed Z., Phys. Lett. A 290 (2001) 19, ibid 310 (2003) 139, J. Phys. A 36 (2003) 10325.
[8] E. Delabaere and Pham F., Phys. Lett. A 250 (1998) 25, ibid, 250 (1998) 29.
[9] C.Bender M., K.A. Milton and V.Savage M., Phys. Rev. D 62 (2000) 085001; C.Bender M., Boettcher S., H.F. Jones and P.N. Meisinger, J. Math. Phys. 42 (2001) 1960; C.Bender M., S. Boettcher, H.Jones F., P.N. Meisinger and M. Şimşek, Phys. Lett. A 291 (2001) 197; C.Bender M., Czech. J. Phys. 54 (2004) 13.
[21] F.Fernandez M., Guardiola R., J. Ros and Znojil M., J. Phys. A 31 (1998) 10105; G.A. Merzinescu, J. Phys. A 33 (2000) 4911; O.Mustafa and Znojil M., J. Phys. A 35 (2002) 8929; Znojil M., F. Gemperle and Mustafa O., J. Phys. A 35 (2002) 5781; Znojil M., J. Phys. A 35 (2002) 2341; Znojil M., Phys. Lett. A 271 (2000) 327.
[23] C.Jia S., X.L. Zeug and L.Sun T., Phys. Lett. A 294 (2002) 185; M. Znojil, J. Phys. A 36 (2003) 7639; Znojil M., J. Phys. A 36 (2003) 7825; M. Znojil and G. Lévai, Mod. Phys. Lett. A 16 (2001) 2273; Znojil M., Phys. Lett. A 285 (2001) 7, hep-th/0404213.
[24] H. Taşeli, Phys J., A 31 (1998) 779; Znojil M., Phys. Lett, A 264 (1999) 108; ö. Yeşiltaş, M. şimşek, R. Sever and Tezcan C., Phys. Scripta T67 (2003) 472; D.Barclay T., R. Dutt, A.Gangopadhyaya, Khare A., Pagnamenta A., C.Jia S., Y. Sun and Li Y., Phys. Lett. A 305 (2002) 231; G. Lévai and M. Znojil, J. Phys. A 35 (2002) 8793.
[25] C.M. Bender and Boettcher S., J. Phys. A 31 (1998) L273; C.M. Bender, Boettcher S., H.F. Jones and V.Savage M., J. Phys. A 32 (1999) 6771, Znojil M., J. Phys. A 33 (2000) 4203; Sinha A., G. Lévai and Roy P., Phys. Lett. A 322 (2004) 78.
[31] E. Schrödinger, Proc. R. Irish Acad. A 46 (1940) 9; ibid, 46 (1940) 183; ibid, 47 (1941) 53.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.