Integrability of nonlinear dynamical systems and differential geometry structures. (English. Russian original) Zbl 0808.58027

Ukr. Math. J. 45, No. 3, 448-456 (1993); translation from Ukr. Mat. Zh. 45, No. 3, 419-427 (1993).
Some aspects of the application of differential geometry methods to the study of the integrability of a nonlinear dynamical system \(u_ t = K[u]\), where \(K : M \to T(M)\) is a vector field on \(M = C^ \infty (N,M)\), \(N\), \(M\) are smooth finite-dimensional real manifolds. The author restricts himself to a class of vector fields on \(M\), which possess additional differential geometry structures such as the Hamiltonian property and the Noetherian invariance. The paper is interesting and well written.
Reviewer: A.Klíč (Praha)


37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
58A20 Jets in global analysis
58D15 Manifolds of mappings
Full Text: DOI


[1] A. M. Vasil’ev,Theory of Differential Geometry Structures [in Russian], Moscow University, Moscow (1987).
[2] V. I. Arnol’d, A. I. Varchenko, and S. M. Gusein-Zade,Peculiarities of Differentiable Mappings [in Russian], Nauka, Moscow (1982).
[3] P. J. Olver, ?On the Hamiltonian structure of evolution equations,?Math. Proc. Cambridge Philos. Soc.,88, No. 1, 71-88 (1980). · Zbl 0445.58012
[4] I. M. Gel’fand and L. A. Dikii, ?Asymptotics of the resolvent of Sturm-Liouville equations and the algebra of Korteweg ? de Vries equations,?Uspekhi Mat. Nauk,30, No. 5, 67-100 (1875).
[5] B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko,Modern Geometry [in Russian], Nauka, Moscow (1984).
[6] C. Godbillon,Géométrie Différentielle et Mécanique Analytique [Russian translation], Mir, Moscow (1973).
[7] O. I. Bogoyavlenskii and S. P. Novikov, ?On the connection of Hamiltonian formalism of the stationary and nonstationary problems,?Funkts. Anal. Prilozhen.,10, No. 1, 9-13 (1976).
[8] V. G. Samoilenko and A. K. Prikarpatskii, ?Algebraic structure of the gradient method of constructing the criteria of integrability for nonlinear dynamical systems,? in:Functional Equations in Statistical Mechanics and Nonlinear Dynamical Systems [in Russian], Preprint No. 86.53, Institute of Mathematics, Academy of Sciences of the Ukrainian SSR, Kiev (1986), pp. 19-56.
[9] L. A. Takhtadzhan and L. D. Faddeev,Hamiltonian Approach in the Theory of Solitons [in Russian], Nauka, Moscow (1986). · Zbl 0618.35100
[10] Yu. A. Mitropol’skii, N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, and V. G. Samoilenko,Integrable Dynamical Systems [in Russian], Naukova Dumka, Kiev (1987).
[11] Yu. A. Mitropo?kii, A. K. Prikarpatskii, and V. G. Samoilenko, ?Asymptotic methods of constructing the implectic and Noether operators for completely integrable Hamiltonian systems,?Dokl. Akad. Nauk SSSR,287, No. 6, 1312-1317 (1986).
[12] P. D. Lax, ?Periodic solutions of the Korteweg ? de Vries equation,?Commun. Pure Appl. Math.,28, No. 1, 141-188 (1975). · Zbl 0302.35008
[13] O. I. Mokhov, ?On the Hamiltonian property of an arbitrary evolutionary system on the set of stationary points of its integral,?Izv. Akad. Nauk SSSR, Ser. Mat.,51, No 6, 1345-1351 (1987). · Zbl 0671.58009
[14] A. V. Mikhailov, A. B. Shabat, and R. I. Yamilov, ?A symmetry approach to the classification of nonlinear equations. Complete lists of integrable systems,?Uspekhi Mat. Nauk,42, No. 4, 3-53 (1987).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.