×

Wannier-Stark resonances in optical and semiconductor superlattices. (English) Zbl 0995.81165

Summary: In this work, we discuss the resonance states of a quantum particle in a periodic potential plus a static force. Originally, this problem was formulated for a crystal electron subject to a static electric field and it is nowadays known as the Wannier-Stark problem. We describe a novel approach to the Wannier-Stark problem developed in recent years. This approach allows to compute the complex energy spectrum of a Wannier-Stark system as the poles of a rigorously constructed scattering matrix and solves the Wannier-Stark problem without any approximation. The suggested method is very efficient from the numerical point of view and has proven to be a powerful analytic tool for Wannier-Stark resonances appearing in different physical systems such as optical lattices or semiconductor superlattices.

MSC:

81V70 Many-body theory; quantum Hall effect
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Bloch, F., Über die quantenmechanik der electronen in kristallgittern, Z. phys., 52, 555, (1928) · JFM 54.0990.01
[2] Zener, C., A theory of electrical breakdown of solid dielectrics, R. soc. lond. A, 145, 523, (1934) · JFM 60.0781.04
[3] Wannier, G.H., Wave functions and effective Hamiltonian for Bloch electrons in an electric field, Phys. rev., 117, 432, (1960) · Zbl 0091.23502
[4] Zak, J., Stark ladder in solids?, Phys. rev. lett., 20, 1477, (1968)
[5] Wannier, G.H., Stark ladder in solids? A reply, Phys. rev., 181, 1364, (1969)
[6] Zak, J., Stark ladder in solids? A reply to a reply, Phys. rev., 181, 1366, (1969)
[7] Rabinovitch, A.; Zak, J., Electrons in crystals in finite-range electric fields, Phys. rev. B, 4, 2358, (1971)
[8] Shockley, W., Stark ladders for finite, one-dimensional models of crystals, Phys. rev. lett., 28, 349, (1972)
[9] Rabinowitch, A.; Zak, J., Does a Bloch electron in a constant electric field oscillate?, Phys. lett. A, 40, 189, (1972)
[10] Churchill, J.N.; Holmstrom, F.E., Comments on the existence of Bloch oscillations, Phys. lett. A, 85, 453, (1981)
[11] Churchill, J.N.; Holmstrom, F.E., Energy states and Bloch states for an accelerated electron in a periodic lattice, Phys. scr., 27, 91, (1983)
[12] Krieger, J.B.; Iafrate, G.J., Time evolution of Bloch electrons in a homogeneous electric field, Phys. rev. B, 33, 5494, (1986)
[13] Emin, D.; Hart, C.F., Existence of wannier – stark localization, Phys. rev. B, 36, 7353, (1987)
[14] Hart, C.F.; Emin, D., Time evolution of a Bloch electron in a constant electric field, Phys. rev. B, 37, 6100, (1988)
[15] Kleinman, L., Comment on “existence of wannier – stark localization”, Phys. rev. B, 41, 3857, (1990)
[16] Zak, J., Comment on the existence proofs of the wannier – stark ladder, Phys. rev. B, 43, 4519, (1991)
[17] Page, D.A.; Brown, E., Comment on “existence of wannier – stark localization”, Phys. rev. B, 43, 2423, (1991)
[18] Leo, J.; MacKinnon, A., Comment on “existence of wannier – stark localization”, Phys. rev. B, 43, 5166, (1991)
[19] Zhao, X.G., Bloch electron in a uniform electric field, Phys. rev. B, 46, 1305, (1992)
[20] Nenciu, G., Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective Hamiltonians, Rev. mod. phys., 63, 91, (1991)
[21] Bouchard, A.M.; Luban, M., Bloch oscillations and other dynamical phenomena of electrons in semiconductor superlattices, Phys. rev. B, 52, 5105, (1995)
[22] Rossi, F., Bloch oscillations and wannier – stark localization in semiconductor superlattices, (), 283
[23] Avron, J.E.; Zak, J.; Grossmann, A.; Gunther, L., Instability of the continuous spectrum: the N-band Stark ladder, J. math. phys., 18, 918, (1977)
[24] Bentosela, F.; Carmona, R.; Duclos, P.; Simon, B.; Souillard, B.; Weder, R., Schrödinger operators with an electric field and random or deterministic potentials, Commun. math. phys., 88, 387, (1983) · Zbl 0531.60061
[25] Herbst, I.W.; Howland, J.S., The Stark ladder and other one-dimensional external field problems, Commun. math. phys., 80, 23, (1981) · Zbl 0473.47037
[26] Agler, J.; Froese, R., Existence of Stark ladder resonances, Commun. math. phys., 100, 161, (1985) · Zbl 0651.47006
[27] Combes, J.-M.; Hislop, P.D., Stark ladder resonances for small electric fields, Commun. math. phys., 140, 291, (1991) · Zbl 0737.34060
[28] Bentosela, F.; Grecchi, V., Stark Wannier ladders, Commun. math. phys., 142, 169, (1991) · Zbl 0743.35053
[29] Moiseyev, N., Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling, Phys. rep., 302, 211, (1998)
[30] Avron, J.E., Model calculations of Stark ladder resonances, Phys. rev. lett., 37, 1568, (1976)
[31] Avron, J.E., The lifetime of Wannier ladder states, Ann. phys. (NY), 143, 33, (1982)
[32] Grecchi, V.; Maioli, M.; Sacchetti, A, Wannier ladders and perturbation theory, J. phys. A, 26, L379, (1993) · Zbl 0772.34059
[33] Grecchi, V.; Maioli, M.; Sacchetti, A., Stark ladder of resonances: Wannier ladders and perturbation theory, Commun. math. phys., 159, 605, (1994) · Zbl 0808.35114
[34] Grecchi, V.; Sacchetti, A., Crossing and anticrossing of resonances: the wannier – stark ladders, Ann. phys. (N.Y.), 241, 258, (1995)
[35] Grecchi, V.; Sacchetti, A., Metastable Bloch oscillators, Phys. rev. lett., 78, 4474, (1997)
[36] Grecchi, V.; Sacchetti, A., Lifetime of the wannier – stark resonances and parturbation theory, Commun. math. phys., 185, 359, (1997) · Zbl 0899.35086
[37] Grecchi, V.; Sacchetti, A., Wannier – bloch oscillators, Commun. math. phys., 197, 553, (1998) · Zbl 0922.34073
[38] Buslaev, V.; Grigis, A., Imaginary parts of stark – wannier resonances, J. math. phys., 39, 2520, (1998) · Zbl 1001.34075
[39] Banavar, J.; Coon, D.D., Widths and spacing of Stark ladder levels, Phys. rev. B, 17, 3744, (1978)
[40] Bentosela, F.; Grecchi, V.; Zironi, F., Approximate ladder of resonances in a semi-infinite crystal, J. phys. C, 15, 7119, (1982)
[41] Bentosela, F.; Grecchi, V.; Zironi, F., Osillations of Wannier resonances, Phys. rev. lett., 50, 84, (1983)
[42] Ritze, M.; Horing, N.J.M.; Enderlein, R., Density of states and wannier – stark levels of superlattices in an electric field, Phys. rev. B, 47, 10437, (1993)
[43] Chang, M.C.; Niu, Q., Local density of states and level width for wannier – stark ladders, Phys. rev. B, 48, 2215, (1993)
[44] Roy, C.L.; Mahapatra, P.K., Bloch electrons in finite crystals in the presence of a uniform electric field, Phys. rev. B, 25, 1046, (1982)
[45] Soucail, B.; Ferreira, R.; Bastard, G.; Voisin, P., Instability of energy band structure at low electric field: numerical analysis of superlattice minibands, Europhys. lett., 15, 857, (1991)
[46] Mendez, B.; Dominguez-Adame, F., Stark ladders in periodically si-δ-doped gaas, Phys. rev. B, 49, 11471, (1994)
[47] Glutsch, S.; Bechstedt, F., Interaction of wannier – stark ladders and electrical breakdown in superlattices, Phys. rev. B, 60, 16584, (1999)
[48] Fukuyama, H.; Bari, R.A.; Fogedby, H.C., Tightly bound electrons in a uniform electric field, Phys. rev. B, 8, 5579, (1973)
[49] Dunlap, D.H.; Kenkre, V.M., Dynamic localization of a charges particle moving under the influence of an electric field, Phys. rev. B, 34, 3625, (1986)
[50] Zhao, X.-G., Dynamic localization conditions of a charged particle in a dc – ac electric field, Phys. lett. A, 155, 299, (1991)
[51] Zhao, X.-G., Motion of Bloch electrons in time-dependent electric fields with off-diagonal effects, Phys. lett. A, 167, 291, (1992)
[52] Hhong-Shon, N.; Nazareno, H.N., J. phys.: condens. matter, 4, L611, (1992)
[53] Zhao, X.-G.; Niu, Q., Localization of band electrons in dc – ac electric fields, Phys. lett. A, 191, 181, (1994)
[54] Zhao, X.-G.; Jahnke, R.; Niu, Q., Dynamic fractional Stark ladders in dc – ac fields, Phys. lett. A, 202, 297, (1995)
[55] Drese, K.; Holthaus, M., Exploring a metal – insulator transition with ultracold atoms in standing light waves?, Phys. rev. lett., 78, 2932, (1997)
[56] Grifoni, M.; Hänngi, P.H., Driven quantum tunneling, Phys. rep., 304, 229, (1998)
[57] Hone, D.W.; Holthaus, M., Locally disordered lattices in strong ac electric fields, Phys. rev. B, 48, 15123, (1993)
[58] Yamada, H.; Ikeda, K.; Goda, M., Quantum diffusion in a coherently time-varying one-dimensional disordered system, Phys. lett. A, 182, 77, (1993)
[59] Holthaus, M.; Ristow, G.H.; Hone, D.W., Ac-field-controlled Anderson localization in disordered semiconductor superlattices, Phys. rev. lett., 75, 3914, (1995)
[60] Holthaus, M.; Ristow, G.H.; Hone, D.W., Random lattices in combined ac and dc electric fields: Anderson vs. wannier – stark localization, Europhys. lett., 32, 241, (1995)
[61] Drese, K.; Holthaus, M., Anderson localization in an ac-driven two-band model, J. phys.: condens. matter, 8, 1193, (1996)
[62] Yamada, H.; Ikeda, K.S., Anomalous diffusion and scaling behavior of dynamically perturbed one-dimensional disordered quantum systems, Phys. lett. A, 248, 179, (1993)
[63] Suqing, D.; Zhao, X.-G., Effect of external noise on dynamic localization of a charged particle, Phys. rev. B, 61, 5442, (2000)
[64] Kovanis, V.I.; Kenkre, V.M., Exact self-propagators for quasiparticle motion on a chain with alternating site energies or intersite interactions, Phys. lett. A, 130, 147, (1988)
[65] Zhao, X.-G., Exact solutions for a charged particle in a uniform electric field with alternating site energies: perturbation theory, J. phys.: condens. matter, 3, 6021, (1991)
[66] Zhao, X.-G., Dynamics of a periodic binary sequence in an ac field, J. phys.: condens. matter, 9, L385, (1997)
[67] Bao, S.-Q.; Zhao, X.-G.; Zhang, X.-W.; Yan, W.-X., Dynamics of a charged particle on a periodic binary sequence in an external field, Phys. lett. A, 240, 7771, (1998)
[68] Rivera, P.H.; Schulz, P.A., Tuning of dynamic localization in coupled minibands: signatures of a field-induced metal-insulator transition, Phys. rev. B, 61, R7865, (2000)
[69] Rotvig, J.; Jauho, A.-P.; Smith, H., Bloch oscillations, Zener tunneling and wannier – stark ladders in the time domain, Phys. rev. lett., 74, 1831, (1995)
[70] Rotvig, J.; Jauho, A.-P.; Smith, H., Theory of coherent time-dependent transport in one-dimensional multiband semiconductor superlattices, Phys. rev. B, 54, 17691, (1996)
[71] Hone, D.W.; Zhao, X.-G., Time-periodic behaviour of multiband superlattices in static electric fields, Phys. rev. B, 53, 4834, (1996)
[72] Zhao, X.-G.; Yan, W.-X.; Hone, D.W., Zener transitions between dissipative Bloch bands, Phys. rev. B, 57, 9849, (1998)
[73] Yan, W.X.; Zhao, X.-G.; Bao, S.-Q., Dynamics of two-band semiconductor superlattices driven by static and time-dependent fields, Physica B, 252, 63, (1998)
[74] Zhao, X.-G.; Georgakis, G.A.; Niu, Q., Rabi oscillations between Bloch bands, Phys. rev. B, 54, R5235, (1996)
[75] Kohn, W., Construction of Wannier functions and applications to energy bands, Phys. rev. B, 7, 4388, (1972)
[76] Kohn, W., Analytic properties of Bloch waves and Wannier functions, Phys. rev., 115, 809, (1959) · Zbl 0086.45101
[77] Nenciu, G., Existence of the exponentially localized Wannier functions, Commun. math. phys., 91, 81, (1983) · Zbl 0545.47012
[78] Houston, W.V., Acceleration of electrons in a crystal lattice, Phys. rev., 57, 184, (1940)
[79] Landau, L.D., A theory of energy transfer II, Phys. Z. sov., 2, 46, (1932)
[80] Koss, R.W.; Lambert, L.M., Experimental observation of Wannier levels in semi-insulating gallium arsenide, Phys. rev. B, 5, 1479, (1972)
[81] L. Esaki, The evolution of semiconductor quantum structures. Do-it-yourself quantum mechanics, in: A. Stella, L. Miglio (Eds.), Superreticoli e Interface die Semiconduttori, Proceedings of the International School of Physics Enrico Fermi, Vol. 117, North-Holland, Amsterdam, 1993, p. 1.
[82] Mendez, E.E.; Agullo-Rueda, F.; Hong, J.M., Stark localizations in gaas – gaalas superlattices under an electric field, Phys. rev. lett., 60, 2426, (1988)
[83] Voisin, P.; Bleuse, J.; Bouche, C.; Gaillard, S.; Alibert, C.; Regreny, A., Observation of the wannier – stark quantization in a semiconductor superlattice, Phys. rev. lett., 61, 1639, (1988)
[84] Mendez, E.E.; Bastard, G., Wannier – stark ladders and Bloch oscillations in superlattices, Phys. today, 46, 6, 34, (1993)
[85] Feldmann, J.; Leo, K.; Shah, J.; Miller, B.A.B.; Cunningham, J.E.; Meier, T.; von Plessen, G.; Schulze, A.; Thomas, P.; Schmitt-Rink, S., Optical investigation of Bloch oscillations in a semiconductor superlattice, Phys. rev. B, 46, 7252, (1992)
[86] Leo, K.; Bolivar, P.H.; Brüggemann, F.; Schwedler, R.; Köhler, K., Observation of Bloch oscillations in a semiconductor superlattice, Solid state commun., 84, 943, (1992)
[87] von Plessen, G.; Thomas, P., Method for observing Bloch oscillations in the time domain, Phys. rev. B, 45, 9185, (1992)
[88] Waschke, C.; G. Roskos, H.; Schwedler, R.; Leo, K.; Kurz, H.; Köhler, K., Coherent submillimeter-wave emission from Bloch oscillations in a semiconductor superlattice, Phys. rev. lett., 70, 3319, (1993)
[89] Dekorsy, T.; Leisching, P.; Köhler, K.; Kurz, H., Electro-optic detection of Bloch oscillations, Phys. rev. B, 50, 8106, (1994)
[90] Cho, G.C.; Dekorsy, T.; Bakker, H.J.; Kurz, H.; Kohl, A.; Opitz, B., Bloch-oscillations in in – ga-As-P/in – ga-As-P heterostructures observed with time-resolved transmission spectroscopy, Phys. rev. B, 54, 4420, (1996)
[91] Leo, K., Interband optical investigation of Bloch oscillations in semiconductor superlattices, Semicond. sci. technol., 13, 249, (1998)
[92] Dekorsy, T.; Ott, R.; Kurz, H., Bloch oscillations at room temperature, Phys. rev. B, 51, 17275, (1995)
[93] Lyssenko, V.G.; Valusis, G.; Löser, F.; Hasche, T.; Leo, K., Direct measurement of the spatial displacement of Bloch-oscillating electrons in semiconductor superlattices, Phys. rev. lett., 79, 301, (1997)
[94] Sudzius, M.; Lyssenko, V.G.; Löser, F.; Leo, K.; Dignam, M.M.; Köhler, K., Optical control of Bloch-oscillation amplitudes: from harmonic spatial motion to breathing modes, Phys. rev. B, 57, R12693, (1998)
[95] Soucail, B.; Dupuis, N.; Ferreira, R.; Voisin, P.; Roth, A.P.; Morris, D.; Gibb, K.; Lacelle, C., Electron minibands and wannier – stark quantization in an in_{0.15}ga0.85As – gaas strained-layer superlattice, Phys. rev. B, 41, 8568, (1990)
[96] Whittaker, D.M.; Skolnick, M.S.; Smith, G.W.; Whitehouse, C.R., Wannier – stark localization of X and γ states in gaas – alas short-period superlattices, Phys. rev. B, 42, 3591, (1990)
[97] Schneider, H.; Jawashima, K.; Fujiwara, K., Stark localization of a pair of coupled minibands in gaas/alas double-period superlattice, Phys. rev. B, 44, 5943, (1991)
[98] Yu, R.H., Wannier – stark localization in modulation-doped multiple-quantum-well structures, Phys. rev. B, 49, 4673, (1994)
[99] Peggs, D.W.; Skolnik, M.S.; Whittaker, D.M.; Hogg, R.A.; Willcox, A.R.K.; Mowbray, D.J.; Grey, R.; Rees, G.J.; Hart, L.; Hopkinson, M.; Hill, G.; Pate, M.A., Observation of wannier – stark ladder transitions in in_{x}ga1−xas – gaas piezoelectric superlattices, Phys. rev. B, 52, R14340, (1995)
[100] Gibb, K.; Digman, M.M.; Sipe, J.E.; Roth, A.P., Observation of wannier – stark localization by electroreflectance spectroscopy, Phys. rev. B, 48, 8156, (1993)
[101] Hamaguchi, C.; Yamaguchi, M.; Morifuji, M.; Kubo, H.; Taniguchi, K.; Gmachl, C.; Gornik, E., Wannier – stark effect in superlattices, Semicond. sci. technol., 9, 1994, (1994)
[102] Schneider, H.; Grahn, H.T.; Klitzing, K.V.; Ploog, K., Resonance-induced delocalization of electrons in gaas – alas superlattices, Phys. rev. lett., 65, 2720, (1990)
[103] Nakayama, M.; Tanaka, I.; Nishimura, H.; Kawashima, K.; Fujiwara, K., Electroreflectance detection of resonant coupling between wannier – stark localization states in semiconductor superlattices, Phys. rev. B, 44, 5935, (1991)
[104] Tanaka, I.; Nakayama, M.; Nishimure, H.; Kawashime, K.; Fujiwara, K., Electroreflectance intensity for resonant coupling between wannier – stark localisation states in gaas/alas superlattice, Phys. rev. B, 46, 7656, (1992)
[105] Bastard, G.; Ferreira, R.; Chelles, S.; Voisin, P., Interaction between wannier – states in semiconductor superlattices, Phys. rev. B, 50, 4445, (1994)
[106] Kümmel, H.; Till, R.; Philip, A., Photocurrent spectroscopy of low-electric-field anticrossings in semiconductor superlattices, Phys. rev. B, 60, 4470, (1999)
[107] von Plessen, G.; Meier, T.; Feldmann, J.; Göbel, E.O.; Thomas, P.; Goossen, K.W.; Kuo, J.M.; Kopf, R.F., Influence of scattering on the formation of wannier – stark ladders and Bloch-oscillations in semiconductor superlattices, Phys. rev. B, 49, 14058, (1994)
[108] Xia, J.-B., Scattering rates of Wannier states in superlattices in an electric field, Phys. rev. B, 50, 15067, (1994)
[109] Löser, F.; Kosevich, Y.A.; Köhler, K.; Leo, K., Dynamics of Bloch oscillation under the influence of scattering and coherent plasmon coupling, Phys. rev. B, 61, R13373, (2000)
[110] Ribeiro, E.; Cerdeira, F.; Roth, A.P., Step-by-step evolution from franz – keldysh oscillations to wannier – stark confinement in an in_{0.12}ga0.88/gaas superlattice, Phys. rev. B, 46, 12542, (1992)
[111] Schmidt, K.H.; Linder, N.; Döhler, G.H.; Grahn, H.T.; Ploog, K.; Schneider, H., Coexistence of wannier – stark transitions and miniband franz – keldysh oscillations in strongly coupled gaas – alas superlattices, Phys. rev. lett., 72, 2769, (1994)
[112] Linder, N.; Schmidt, K.H.; Geisselbrecht, W.; Döhler, G.H.; Grahn, H.T.; Ploog, K.; Schneider, H., Coexistence of the franz – keldysh and wannier – stark effect in semiconductor superlattices, Phys. rev. B, 52, 17352, (1995)
[113] Dignam, M.M.; Sipe, J.E., Exciton Stark ladders in semiconductor superlattices, Phys. rev. B, 43, 4097, (1991)
[114] Fox, A.M.; Miller, C.A.B.; Cunningham, J.E.; Jan, W.Y.; Chao, C.Y.P.; Chuang, S.L., Suppression of the observation of Stark ladders in optical measurements on superlattices by excitonix effects, Phys. rev. B, 46, 15365, (1992)
[115] Leisching, P.; Bolivar, P.H.; Beck, W.; Dhaibi, Y.; Brüggemann, F.; Schwedler, R.; Kurz, H.; Leo, K.; Köhler, K., Bloch oscillations of excitonic wave packets in semiconductor superlattices, Phys. rev. B, 50, 14389, (1994)
[116] Dignam, M.; Sipe, J.E.; Shah, J., Coherent excitations in the Stark ladder: excitonic Bloch oscillations, Phys. rev. B, 49, 10502, (1994)
[117] Linder, N., Excitons in superlattices: absorption asymmetry, dimensionality transition and exciton localization, Phys. rev. B, 55, 13664, (1997)
[118] di Carlo, A.; Vogl, P.; Pötz, W., Theory of Zener tunneling and wannier – stark states in semiconductors, Phys. rev. B, 50, 8358, (1994)
[119] Sibille, A.; Palmier, J.F.; Laruelle, F., Zener interminiband resonant breakdown in superlattices, Phys. rev. lett., 80, 4506, (1998)
[120] Helm, M.; Hilber, W.; Strasser, G.; de Meester, R.; Peeters, F.M.; Wacker, A., Continuum wannier – stark ladders strongly coupled by Zener resonances in semiconductor superlattices, Phys. rev. lett., 82, 3120, (1999)
[121] Rosam, B.; Meinhold, D.; Loser, F.; Lyssenko, V.G.; Glutsch, S.; Bechstedt, F.; Rossi, F.; Köhler, K.; Leo, K., Field-induced delocalization and Zener breakdown in semiconductor superlattices, Phys. rev. lett., 86, 1307, (2001)
[122] Anderson, B.P.; Gustavson, T.L.; Kasevich, M.A., Atom trapping in nondissipative optical lattices, Phys. rev. A, 53, R3727, (1996)
[123] Wilkinson, S.R.; Bharucha, C.F.; Madison, K.W.; Niu, Qian; Raizen, M.G., Observation of atomic wannier – stark ladders in an accelerating optical potential, Phys. rev. lett., 76, 4512, (1996)
[124] Bharucha, C.F.; Madison, K.W.; Morrow, P.R.; Wikinson, S.R.; Sundaram, B.; Raizen, M.G., Observation of atomic tunneling from an accelerating optical potential, Phys. rev. A, 55, R857, (1997)
[125] Madison, K.W.; Fischer, M.C.; Raizen, M.G., Observation of the wannier – stark Fan and the fractional ladder in an accelerating optical lattice, Phys. rev. A, 60, R1767, (1999)
[126] Anderson, B.P.; Kasevich, M.A., Macroscopic quantum interference from atomic tunnel arrays, Science, 282, 1686, (1998)
[127] Friedel, S.; D’Andrea, C.; Walz, J.; Weitz, M.; Hnsch, T.W., CO_{2}-laser optical lattice with cold rubidium atoms, Phys. rev. A, 57, R20, (1998)
[128] Dutta, S.K.; Teo, B.K.; Raithel, G., Tunneling dynamics and gauge potentials in optical lattices, Phys. rev. lett., 83, 1934, (1999)
[129] Dahan, M.B.; Peik, E.; Reichel, J.; C. Salomon, Y.Castin, Bloch oscillations of atoms in an optical potential, Phys. rev. lett., 76, 4508, (1996)
[130] Guidoni, L.; Verkerk, P., Direct observation of atomic localization in optical superlattices, Phys. rev. A, 57, R1501, (1998)
[131] Vant, K.; Ball, G.; Amman, H.; Christensen, N., Experimental evidence for the role of cantori as barriers in quantum systems, Phys. rev. E, 59, 2846, (1999)
[132] Müller-Seydlitz, T.; Hartl, M.; Brezger, B.; Hnsel, H.; Keller, C.; Schnetz, A.; Spreeuw, R.J.C.; Pfau, T.; Mlynek, J., Atoms in the lowest motional band of a three-dimensional optical lattice, Phys. rev. lett., 78, 1038, (1997)
[133] Adams, C.S.; Sigel, M.; Mlynek, J., Atom optics, Phys. rep., 240, 143, (1994)
[134] Wallis, H., Quantum theory of atomic motion in laser light, Phys. rep., 255, 203, (1995)
[135] Bernet, S.; Abfalterer, R.; Keller, C.; Oberthaler, M.K.; Schmiedmayer, J.; Zeilinger, A., Matter waves in time-modulated complex light potentials, Phys. rev. A, 62, 023606, (2000)
[136] Niu, Qian; Zhao, Xian-Geng; Georgakis, G.A.; Raizen, M.G., Atomic landau – zener tunneling and wannier – stark ladders in optical potentials, Phys. rev. lett., 76, 4504, (1996)
[137] M.G. Raizen, C. Salomon, Qian Niu, New light on quantum transport, Phys. Today 50 (7) (1997) 30.
[138] Madison, K.W.; Fisher, M.C.; Diener, R.B.; Niu, Qian; Raizen, M.G., Dynamical Bloch band supression in an optical lattice, Phys. rev. lett., 81, 5093, (1998)
[139] Monsivais, G.; del Castillo-Mussot, M.; Claro, F., Stark-ladder resonances in the propagation of electromagnetic waves, Phys. rev. lett., 64, 1433, (1990)
[140] de Sterke, C.M.; Bright, J.N.; Krug, P.A.; Hammon, T.E., Observation of an optical Stark ladder, Phys. rev. E, 57, 2365, (1998)
[141] Peschel, U.; Pertsch, T.; Lederer, F., Optical Bloch oscillations in waveguide arrays, Opt. lett., 23, 1701, (1998)
[142] Lenz, G.; Talanina, I.; Martijin de Sterke, C., Bloch oscillations in an array of curved optical waveguides, Phys. rev. lett., 83, 963, (1999)
[143] Kavokin, A.; Malpuech, G.; Di Carlo, A.; Lugli, P.; Rossi, F., Photonic Bloch oscillations in laterally confined Bragg mirrors, Phys. rev. B, 61, 4413, (2000)
[144] Morandotti, R.; Peschel, U.; Aitchinson, J.S.; Eisenberg, H.S.; Silberberg, Y., Experimental observation of linear and non-linear optical Bloch oscillations, Phys. rev. lett., 83, 4756, (1999)
[145] Pertsch, T.; Dannberg, P.; Elflein, W.; Bruer, A.; Lederer, F., Optical Bloch oscillations in temperature tuned waveguide arrays, Phys. rev. lett., 83, 4752, (1999)
[146] Sankin, V.I.; Stolichnov, I.A.; Mal’tsev, A.A., Strong wannier – stark localization effects in 6H and 4H silicon carbide polytypes, Pis’ma zh. tekh. fiz., 22, 881, (1996)
[147] Sankin, V.I.; Stolichnov, I.A., Negative differential conduction in the Bloch oscillations regime in the hexagonal silicon carbide polytypes 4H, 6H, and 8H, Superlatt. microstruct., 23, 999, (1997)
[148] Mateos, J.L.; Monsivais, G., Stark-ladder resonances in elastic waves, Physica A, 207, 445, (1994)
[149] Glück, M.; Kolovsky, A.R.; Korsch, H.J.; Moiseyev, N., Calculation of wannier – bloch and wannier – stark states, Eur. phys. J. D, 4, 239, (1998)
[150] Glück, M.; Kolovsky, A.R.; Korsch, H.J., Bloch particle in presence of dc and ac fields, Phys. lett. A, 249, 483, (1998)
[151] Glück, M.; Kolovsky, A.R.; Korsch, H.J., Chaotic wannier – bloch resonance states, Phys. rev. E, 58, 6835, (1998) · Zbl 0903.58023
[152] Glück, M.; Kolovsky, A.R.; Korsch, H.J., A truncated shift-operator technique for the calculation of resonances in Stark systems, J. phys. A, 32, L49, (1999) · Zbl 0928.34068
[153] Glück, M.; Kolovsky, A.R.; Korsch, H.J., Lifetime statistics for a Bloch particle in ac and dc fields, Phys. rev. E, 60, 247, (1999)
[154] Glück, M.; Kolovsky, A.R.; Korsch, H.J., Bloch particle in presence of dc and ac fields: statistics of the Wigner delay time, Phys. rev. lett., 82, 1534, (1999)
[155] Glück, M.; Kolovsky, A.R.; Korsch, H.J., Lifetime of wannier – stark states, Phys. rev. lett., 83, 891, (1999)
[156] Glück, M.; Kolovsky, A.R.; Korsch, H.J., Perturbation theory for Wannier resonance states affected by ac-field, Phys. lett. A, 258, 383, (1999)
[157] Glück, M.; Hankel, M.; Kolovsky, A.R.; Korsch, H.J., Wannier – stark ladders in driven optical lattices, Phys. rev. A, 61, 061402(R), (2000)
[158] Glück, M.; Kolovsky, A.R.; Korsch, H.J., Fractal stabilization of wannier – stark resonances, Europhys. lett., 51, 255, (2000)
[159] Glück, M.; Hankel, M.; Kolovsky, A.R.; Korsch, H.J., Induced transitions between Wannier ladders, J. opt. B, 2, 612, (2000)
[160] Glück, M.; Kolovsky, A.R.; Korsch, H.J., Resonant tunneling of wannier – stark-states, J. opt. B, 2, 694, (2000)
[161] Glück, M.; Kolovsky, A.R.; Korsch, H.J., A quantum cable car for wannier – stark ladders, Phys. lett. A, 276, 167, (2000)
[162] Glück, M.; Kolovsky, A.R.; Korsch, H.J., About universality of lifetime statistics in quantum chaotic scattering, Physica E, 9, 478, (2001)
[163] Glück, M.; Kolovsky, A.R.; Korsch, H.J.; Zimmer, F., Wannier – stark resonances in semiconductor superlattices, Phys. rev. B, 65, 115302, (2002)
[164] M. Glück, Wannier-Stark resonances, Ph.D. Thesis, Universität Kaiserslautern, 2000.
[165] Abramowitz, M.; Stegun, I.A., Handbook of mathematical functions, (1972), Dover New York · Zbl 0515.33001
[166] Ashby, N.; Miller, S.C., Electric and magnetic translation group, Phys. rev., 139, A428, (1965)
[167] Niu, Qian, Effect of an electric field on a split Bloch band, Phys. rev. B, 40, 3625, (1989)
[168] Siegert, A.J.F., On the derivation of the dispersion formula for nuclear reactions, Phys. rev., 56, 750, (1939)
[169] Wagner, M.; Mizuta, H., Complex-energy analysis of intrinsic lifetimes of resonances in biased multiple quantum wells, Phys. rev. B, 48, 14393, (1993)
[170] Hernandez, E.; Jauregui, A.; Mondragon, A., Degeneracy of resonances in a double barrier potential, J. phys. A, 33, 4507, (2000) · Zbl 1004.81033
[171] Philipp, M.; von Brentano, P.; Pascovici, G.; Richter, A., Frequency and width crossing of two interacting resonances in a microwave cavity, Phys. rev. E, 62, 1922, (2000)
[172] Fano, U., Effects of configuration interaction on intensities and phase shifts, Phys. rev., 124, 1866, (1961) · Zbl 0116.23405
[173] H.A. Kramers, in: R. Stoops (Ed.), Les Particules Èlèmentaires, Proceedings of the Eighth Solvay Conference, Wiley, New York, 1950.
[174] Kramers, H.A., Collected scientific papers, (1956), North-Holland Amsterdam
[175] Henneberger, W.C., Perturbation method for atoms in intense light beams, Phys. rev. lett., 21, 838, (1968)
[176] Choi, C.K.; Henneberger, W.C.; Sanders, F.C., Intensity-dependent ionization potentials for H and he in intense laser beams, Phys. rev. A, 9, 1895, (1974)
[177] Zak, J., Finite translations in time and energy, Phys. rev. lett., 71, 2623, (1993)
[178] Zak, J., Quasienergy states for a Bloch electron in a constant electric field, J. phys.: condens. matter, 8, 8295, (1996)
[179] Bass, F.G.; Tetervov, A.P., High-frequency phenomena in semiconductor superlattices, Phys. rep., 140, 237, (1986)
[180] Hofstadter, D.R., Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. rev. B, 14, 2239, (1076)
[181] Bensch, F.; Korsch, H.-J.; Moiseyev, N., Simple method for constructing the ionization spectra of driven time-periodic Hamiltonians, Phys. rev. A, 43, 5145, (1991)
[182] Smith, F.T., Lifetime matrix in collision theory, Phys. rev. B, 118, 349, (1960) · Zbl 0092.19001
[183] van Dijk, W.; Kataoka, F.; Nogami, Y., Space – time evolution of a decaying quantum state, J. phys. A, 32, 6347, (1999) · Zbl 0991.81126
[184] van Dijk, W.; Nogami, Y., Novel expression for the wave function of a decaying quantum system, Phys. rev. lett., 83, 2867, (1999)
[185] Taylor, J.R., Scattering theory, (1972), Wiley New York
[186] Parkins, A.S.; Walls, D.F., The physics of trapped dilute-gas bose – einstein condensates, Phys. rep., 303, 1, (1998)
[187] Chiofalo, M.L.; Tosi, M.P., Output from Bose condensates in tunnel arrays: the role of Mean-field interactions and of transverse confinement, Phys. lett. A, 268, 406, (2000)
[188] Berg-Sorensen, K.; Molmer, K., Bose – einstein condensates in spatially periodic potentials, Phys. rev. A, 58, 1480, (1998)
[189] Choi, Dae-Il; Niu, Qian, Bose – einstein condensates in an optical lattice, Phys. rev. lett., 82, 2022, (1999)
[190] Wu, Biao; Niu, Qian, Nonlinear landau – zener tunneling, Phys. rev. A, 61, 023402, (2000)
[191] Javanainen, J., Phonon approach to an array of traps containing bose – einstein condensates, Phys. rev. A, 60, 4902, (1999)
[192] Zobay, O.; Garraway, B.M., Time-dependent tunneling of bose – einstein condensates, Phys. rev. A, 61, 033603, (2000)
[193] Cerimele, M.M.; Chiofalo, M.L.; Pistella, F.; Succi, S.; Tosi, M.P., Numerical solution of the gross – pitaevskii equation using an explicit finite-difference scheme: an application to trapped bose – einstein condensates, Phys. rev. E, 62, 1382, (2000)
[194] Haake, F., Quantum signatures of chaos, (1991), Springer New York · Zbl 0741.58055
[195] Guhr, T.; Müller-Groeling, A.; Weidenmüller, H.A., Random-matrix theories in quantum physics: common concepts, Phys. rep., 299, 189, (1998)
[196] Beenakker, C.W.J., Random-matrix theory of quantum transport, Rev. mod. phys., 69, 731, (1997)
[197] Bohigas, O.; Giannoni, M.J.; Schmit, C., Characterization of chaotic spectra and universality of level fluctuation laws, Phys. rev. lett., 52, 1, (1984) · Zbl 1119.81326
[198] Lehmann, N.; Savin, D.V.; Sokolov, V.V.; Sommers, H.-J., Time delay correlations in chaotic scattering: random matrix approach, Physica D, 86, 572, (1995) · Zbl 0878.60087
[199] Fyodorov, Y.V.; Sommers, H.-J., Statistics of resonance poles, phase shifts and time delay in quantum chaotic scattering: random matrix approach for systems with broken time-reversal invariance, J. math. phys., 38, 1918, (1997) · Zbl 0872.58072
[200] Seba, P., Random matrix theory and mesoscopic fluctuations, Phys. rev. B, 53, 13024, (1996)
[201] Seba, P.; Zyczkowski, K.; Zakrewski, J., Statistical properties of random scattering matrices, Phys. rev. E, 54, 2438, (1996)
[202] Sommers, H.-J.; Fyodorov, Y.V.; Titov, M., S-matrix poles for chaotic quantum systems as eigenvalues of complex symmetric random matrices: from isolated to overlapping resonances, J. phys. A, 32, L77, (1999)
[203] Ishio, H.; Burgdörfer, J., Quantum conductance fluctuations and classical short-path dynamics, Phys. rev. B, 51, 2013, (1995)
[204] Wirtz, L.; Tang, J.-Z.; Burgdörfer, J., Geometry-dependent scattering through ballistic microstructures: semiclassical theory beyond the stationary-phase approximation, Phys. rev. B, 56, 7589, (1997)
[205] Ishio, H., Resonance poles and width distribution for time-reversal transport through mesoscopic open billards, Phys. rev. E, 62, R3035, (2000)
[206] Blümel, R., Existence of a ericson regime in stretched helium, Phys. rev. A, 54, 5420, (1996)
[207] Mandelshtam, V.A.; Taylor, H.S., The quantum resonance spectrum of the H_{3}+ molecular ion for J=0. an accurate calculation using filter-diagonalization, J. chem. soc. Faraday trans., 93, 847, (1997)
[208] Mandelshtam, V.A.; Taylor, H.S., Spectral analysis of time correlation function for a dissipative dynamical system using filter diagonalization: application to calculation of unimolecular decay rates, Phys. rev. lett., 78, 3274, (1997)
[209] Borgonovi, F.; Guarneri, I.; Shepelyansky, D.L., Statistics of quantum lifetimes in a classically chaotic system, Phys. rev. A, 43, 4517, (1991)
[210] Casati, G.; Maspero, G.; Shepelyansky, D.L., Relaxation process in a regime of quantum chaos, Phys. rev. E, 56, R6233, (1997)
[211] Casati, G.; Guarneri, I.; Maspero, G., Fractal survival probability fluctuations, Phys. rev. lett., 84, 63, (2000)
[212] Kottos, T.; Smilansky, U., Quantum chaos on graphs, Phys. rev. lett., 79, 4794, (1997)
[213] Kottos, T.; Smilansky, U., Chaotic scattering on graphs, Phys. rev. lett., 85, 968, (2000)
[214] Lichtenberg, A.J.; Lieberman, M.A., Regular and chaotic dynamics, (1983), Springer Berlin · Zbl 0506.70016
[215] Graham, R.; Schlautmann, M.; Zoller, P., Dynamical localization of atomic-beam deflection by a modulated standing light wave, Phys. rev. A, 45, R19, (1992)
[216] Pozniak, M.; Zyczkowski, K.; Kus, M., Composed ensembles of random unitary matrices, J. phys. A, 31, 1059, (1998) · Zbl 0952.82014
[217] Zyczkowski, K.; Sommers, H.-J., Truncation of random unitary matrices, J. phys. A, 33, 2045, (2000) · Zbl 0957.82017
[218] Savin, D.V.; Fyodorov, Y.V.; Sommers, H.-J., Reducing nonideal to ideal coupling in random matrix description of chaotic scattering: application to the time-delay problem, Phys. rev. E, 63, 035202(R), (2001)
[219] D.V. Savin, private communication.
[220] Savin, D.V.; Sokolov, V.V., Quantum versus classical decay laws in open chaotic systems, Phys. rev. E, 56, R4911, (1997)
[221] Robinson, J.C.; Bharucha, C.; Moore, F.L.; Jahnke, R.; Georgakis, G.A.; Niu, Q.; Raizen, M.G., Study of quantum dynamics in the transition from classical stability to chaos, Phys. rev. lett., 74, 3963, (1995)
[222] A.R. Kolovsky, Bloch oscillations of the atoms in a standing laser wave, unpublished.
[223] Glück, M.; Keck, F.; Kolovsky, A.R.; Korsch, H.J., Wannier – stark states of a quantum particle in 2D lattices, Phys. rev. lett., 86, 3116, (2001)
[224] Flach, S.; Yevtushenko, O.; Zolotaryuk, Y., Directed current due to broken time – space symmetry, Phys. rev. lett., 84, 2358, (2000)
[225] Dittrich, T.; Ketzmerick, R.; Otto, M.F.; Schanz, H., Classical and quantum transport in deterministic Hamiltonian ratchets, Ann. phys. (Leipzig), 9, 755, (2000) · Zbl 1079.81528
[226] Schanz, H.; Otto, M.-F.; Ketzmerick, R.; Dittrich, T., Classical and quantum Hamiltonian ratchets, Phys. rev. lett., 87, 070601, (2001)
[227] Goychuk, I.; Hänggi, P., Directed current without dissipation: reincarnation of a maxwell – loschmidt demon, (), 7-20
[228] Goychuk, I.; Hänggi, P., Minimal quantum Brownian rectifiers, J. phys. chem., 105, 6642, (2001)
[229] Utermann, R.; Dittrich, T.; Hänggi, P., Tunneling and the onset of chaos in a driven bistable system, Phys. rev. E, 49, 273, (1994)
[230] Tomsovic, S.; Ullmo, D., Chaos assisted tunneling, Phys. rev. E, 50, 145, (1994)
[231] Averbukh, V.; Moiseyev, N.; Mirbach, B.; Korsch, H.J., Dynamical tunneling through a chaotic region—a continuously driven rigid rotor, Z. phys. D, 35, 247, (1995)
[232] Hensinger, W.K.; Häffner, H.; Browaeys, A.; Heckenberg, N.R.; Helmerson, K.; McKenzie, C.; Milburn, G.J.; Phillips, W.D.; Rolston, S.L.; Rubinsztein-Dunlop, H.; Upcroft, B., Dynamical tunnelling of ultracold atoms, Nature, 412, 52, (2001)
[233] Steck, D.A.; Oskay, W.H.; Raizen, M.G., Observation of chaos-assisted tunneling between islands of stability, Science, 293, 274, (2001)
[234] B. Goss Levi, Atoms hop between islands of regular motion in a sea of chaos, Phys. Today (2001) 15.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.