×

Transition distributions of Young diagrams under periodically weighted Plancherel measures. (English) Zbl 1204.60011

Summary: S. V. Kerov [Funct. Anal. Appl. 27, No. 2, 104–117 (1993); translation from Funkts. Anal. Prilozh. 27, No. 2, 32–49 (1993; Zbl 0808.05098; Transl., Ser. 2, Am. Math. Soc. 188, 111–130 (1999); translation from Tr. St-Peterbg. Mat. Obshch. 4, 165–192 (1996)Zbl 0929.05090)] proved that Wigner’s semi-circular law in Gaussian unitary ensembles is the transition distribution of the omega curve discovered by A. M. Vershik and S. V. Kerov [Sov. Math., Dokl. 18, 527–531 (1977); translation from Dokl. Akad. Nauk SSSR 233, 1024–1027 (1977; Zbl 0406.05008)] for the limit shape of random partitions under the Plancherel measure. This establishes a close link between random Plancherel partitions and Gaussian unitary ensembles. In this paper, we aim at considering a general problem, namely, to characterize the transition distribution of the limit shape of random Young diagrams under Poissonized Plancherel measures in a periodic potential, which naturally arises in Nekrasov’s partition functions and was further studied by N. A. Nekrasov and A. Okounkov [in: The unity of mathematics. In honor of the ninetieth birthday of I. M. Gelfand. Papers from the conference held in Cambridge, MA, USA, August 31–September 4, 2003. Boston, MA: Birkhäuser. Progress in Mathematics 244, 525–596 (2006; Zbl 1233.14029)] and A. Okounkov [The use of random partitions. arXiv:math.ph/0309015; Random partitions and instanton counting. arXiv:math.ph/0601062]. We also find an associated matrix model for this transition distribution. Our argument is based on a purely geometric analysis on the relation between matrix models and Seiberg-Witten differentials.

MSC:

60B20 Random matrices (probabilistic aspects)
60E05 Probability distributions: general theory
05A17 Combinatorial aspects of partitions of integers
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Akemann, G. Higher genus correlators for the Hermitian matrix model with multiple cuts. Nucl. Phys., B48: 403–430 (1996) · Zbl 0925.81311
[2] Bogachev, L., Su, Z.G. Gaussian fluctuations of Young diagrams under the Plancherel measure. Proc. R. Soc. A, (2007) DOI: 10.1098/rspa.2006.1808 · Zbl 1200.05248
[3] Borodin, A., Okounkov, A., Olshanski, G. Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc., 13: 481–515 (2000) · Zbl 0938.05061
[4] de Monvel, B., Pastur, L., Scherbina, M. On the statistical mechanics approach to the random matrix theory: the integrated density of states. J. Stat. Phys., 79: 585–611 (1995) · Zbl 1081.82569
[5] Buslaev, V., Pastur, L. A class of the multi-interval eigenvalue distributions of matrix models and related structures. In: Asymptotic Combinatorics with Applications to Mathematical Physics, (eds. V.A. Malyshev and A.M. Vershik), Kluwer Academic Publishers, 2002, 51–70 · Zbl 1041.81024
[6] Chekhov, L., Mironov, A. Matrix models vs. Seiberg-Witten/Whitham theories, hep-th/0209085 · Zbl 1006.81070
[7] Deift, P., Kriecherbauer, T., McLaughlin, K.T.R. New results on the equilibrium measure for logarithmic potentials in the presence of an external field. J. Approx. Theory, 95: 388–475 (1998) · Zbl 0918.31001
[8] Diaconis, P., Shahshahani, M. Generating a random permutation with random transpositions. Z. Wahr. Verw. Gebiete, 57: 159–179 (1981) · Zbl 0485.60006
[9] Dijkgraaf, R., Vafa, C. Matrix models, topological strings, and supersymmetric gauge theories. Nucl. Phys., B644: 3–20 (2002) · Zbl 0999.81068
[10] Francesco, P., Di, Ginsparg, P., Zinn-Justin, J. 2-D gravity and random matrices. Phys. Rept., 254: 1–133 (1995)
[11] Griffith, P., Harris, J. Principles of algebraic geometry. Wiley Interscience, New York, 1978 · Zbl 0408.14001
[12] Gustavsson, J. Gaussian fluctuations of eigenvalues in the GUE. Ann. Inst. H. Poincaré Prob. Stat., 41: 151–178 (2005) · Zbl 1073.60020
[13] Ivanov, V., Olshanski, G. Kerov’s central limit theorem for the Plancherel measure on Young diagrams, In Symmetric functions 2001: surveys of developments and perspectives (ed. S. Fomin), Dordrecht: Kluwer Academic Publishers, 2002, 93–151 · Zbl 1016.05073
[14] Johansson, K. Discrete orthogonal polynomials ensembles and the Plancherel measure. Ann. Math., 153: 259–296 (2001) · Zbl 0984.15020
[15] Jurkiewicz, J. Regularization of one matrix model. Phys. Letter, B245: 178–184 (1990) · Zbl 1119.81385
[16] Kerov, S.V. Transition probabilities of continual Young diagrams and the Markov moment problem. Func. Anal. Appl., 27: 104–117 (1993) · Zbl 0808.05098
[17] Kerov, S.V. A differential model of growth of Young diagrams, Proceedings of the St. Petersburg Math. Soc., 4: 167–194 (1996) · Zbl 0929.05090
[18] Krein, M.G., Nudelman, A.A. Markov’s moment problem and the extreem value problems (In Russia), Nauka, Moscow, 1973
[19] Kuijlaars, A.B.J., McLaughlin, K.T.R. Generic behavior of the density of states in random matrix theory and equilibrium problems in the presence of real analytic external fields. Commun. Pure Appl. Math., 53: 736–785 (2000) · Zbl 1022.31001
[20] Logan, B.F., Shepp, L.A. A variational problem for random Young tableaux. Adv. Math., 26: 205–222 (1977) · Zbl 0363.62068
[21] Maeda, T., Nakatsu, T., Takasaki, K., Tamakoshi, T. Free fermion, and Seiberg-Witten differential in random plane partitions. hep-th/0412329 · Zbl 1207.81156
[22] Mhaskar, H.N., Saff, E.B. Where does the sup norm of a weighted polynomial live? Construc. Approx., 1: 71–91 (1985) · Zbl 0582.41009
[23] Muskhelishvili, N.I. Singular integral equations. Groningen, P. Noordhoff, 1953 · Zbl 0051.33203
[24] Naculich, S.G., Schnitzer, H.J., Wyllard, N. Matrix model approach to the \( \mathcal{N} \) = 2U(N) gauge theory with matter in the fundamental representation, hep-th/0211254
[25] Nekrasov, N., Okounkov, A. Seiberg-Witten Theory and random partitions. In The Unity of Mathematics (ed. by P. Etingof, V. Retakh, I.M. Singer) Progress in Mathematics, 244: Birkhäuser, 2006 · Zbl 1233.14029
[26] Nakajima, H., Yoshioka, K. Lectures on instanton counting, Algebraic structures and moduli spaces, 31–101. CRM Proc. Lect. Notes Vol. 38, Amer. Math. Soc. Providence, RI, 2004 · Zbl 1080.14016
[27] Okounkov, A. Random matrices and random permutations. Internat. Math. Res. Notices, 2000: 1043–1095 (2000) · Zbl 1018.15020
[28] Okounkov, A. The use of random partitions. math.ph/0309015 · Zbl 1120.05301
[29] Okounkov, A. Random partitions and instanton counting. math.ph/0601062. · Zbl 1099.81042
[30] Pastur, L. Spectral and probabilistic aspects of matrix models. In Algebraic and Geometric Methods in Mathematical Physics (edited by A. Boutet de Monvel and V. Marchenko, Dodrecht, Kluwer), 207–242, 1996 · Zbl 0844.15009
[31] Pastur, L. Limiting laws of linear eigenvalue statistics for unitary invariant matrix models, math.PR/0608719 · Zbl 1112.82022
[32] Stein, E., Shakarchi, R. Complex analysis. Princeton Lectures in Analysis, II. Princeton University Press, 2004
[33] Tracy, C.A., Widom, H. Level-spacing distributions and the Airy kernel. Comm. Math. Phys., 159: 151–174 (1994) · Zbl 0789.35152
[34] Vershik, A.M., Kerov, S.V. Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tableaux tables. Dokl. Akad. Nauk SSSR, 233: 1024–1027 (1977), [Soviet Math. Doklady 18: 527–531 (1977)] · Zbl 0406.05008
[35] Wigner, E. Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math., 62: 548–564 (1955) · Zbl 0067.08403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.