×

Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations with time-dependent potential. (English) Zbl 1443.81029

Summary: In this paper, we consider the nonlinear Schrödinger equation \(i \partial_t \psi = - \frac{1}{2} \Delta \psi + V(t, x) \psi - F(| \psi |^2) \psi\) with time-dependent potential in \(\mathbb{R}^3\). We prove that the weakly interacting \(N\)-soliton is asymptotically stable in a Sobolev space \(H^1(\mathbb{R}^3)\) under certain assumptions on the time dependent potential \(V(t, x)\) and the spectral structures of the linearized Hamiltonian.
©2020 American Institute of Physics

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
35Q55 NLS equations (nonlinear Schrödinger equations)
35Q41 Time-dependent Schrödinger equations and Dirac equations
35C08 Soliton solutions
46E39 Sobolev (and similar kinds of) spaces of functions of discrete variables
93B18 Linearizations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Rodnianski, I.; Schlag, W.; Soffer, A., Asymptotic stability of N-soliton states of NLS
[2] Coffman, C., Uniqueness of positive solutions of Δu − u + u^3 = 0 and a variational characterization of other solutions, Arch. Rat. Mech. Anal, 46, 81-95 (1972) · Zbl 0249.35029 · doi:10.1007/bf00250684
[3] Strauss, W., Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55, 149-166 (1977) · Zbl 0356.35028 · doi:10.1007/bf01626517
[4] Berestycki, H.; Lions, P. L., Existence d’ondes solitaires dans des problèmes nonlinéaires du type Klein-Gordon, C. R. Acad. Sci. Paris Sér. A-B, 288, A395-A398 (1979) · Zbl 0397.35024
[5] Cazenave, T.; Lions, P. L., Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys., 85, 549-561 (1982) · Zbl 0513.35007 · doi:10.1007/bf01403504
[6] Weinstein, M., Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16, 472-491 (1985) · Zbl 0583.35028 · doi:10.1137/0516034
[7] Weinstein, M., Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math., 39, 51-67 (1986) · Zbl 0594.35005 · doi:10.1002/cpa.3160390103
[8] Shatah, J.; Strauss, W., Instability of nonlinear bound states, Commun. Math. Phys., 100, 173-190 (1985) · Zbl 0603.35007 · doi:10.1007/bf01212446
[9] Grillakis, M.; Shatah, J.; Strauss, W., Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74, 160-197 (1987) · Zbl 0656.35122 · doi:10.1016/0022-1236(87)90044-9
[10] Grillakis, M.; Shatah, J.; Strauss, W., Stability theory of solitary waves in the presence of symmetry. II, J. Funct. Anal., 94, 308-348 (1990) · Zbl 0711.58013 · doi:10.1016/0022-1236(90)90016-e
[11] Comech, A.; Pelinovsky, D., Purely nonlinear instability of standing waves with minimal energy, Commun. Pure Appl. Math., 56, 1565-1607 (2003) · Zbl 1072.35165 · doi:10.1002/cpa.10104
[12] Cuccagna, S.; Pelinovsky, D.; Vougalter, V., Spectra of positive and negative energies in the linearized NLS problem, Commun. Pure Appl. Math., 58, 1-29 (2005) · Zbl 1064.35181 · doi:10.1002/cpa.20050
[13] De Bièvre, S.; Genoud, F.; Rota Nodari, S., Orbital stability: Analysis meets geometry, Nonlinear Optical and Atomic Systems, 147-273 (2015), Springer: Springer, Cham · Zbl 1347.37122
[14] Schlag, W., Stable manifolds for an orbitally unstable NLS, Ann. Math., 169, 139-227 (2009) · Zbl 1180.35490 · doi:10.4007/annals.2009.169.139
[15] Soffer, A.; Weinstein, M., Multichannel nonlinear scattering theory for nonintegrable equations, Commun. Math. Phys., 133, 119-146 (1990) · Zbl 0721.35082 · doi:10.1007/bf02096557
[16] Buslaev, V.; Perel’man, G., Scattering for the nonlinear Schrödinger equation: States close to a soliton, St. Petersburg Math. J, 4, 1111-1142 (1993) · Zbl 0853.35112
[17] Cuccagna, S.; Maeda, M., On weak interaction between a ground state and a non-trapping potential, J. Differ. Equations, 256, 1395-1466 (2014) · Zbl 1285.35107 · doi:10.1016/j.jde.2013.11.002
[18] Cuccagna, S.; Maeda, M., On small energy stabilization in the NLS with a trapping potential, Anal. PDE, 8, 1289-1349 (2015) · Zbl 1326.35335 · doi:10.2140/apde.2015.8.1289
[19] Gustafson, S.; Nakanishi, K.; Tsai, T., Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves, Int. Math. Res. Not., 2004, 66, 3559-3584 · Zbl 1072.35167 · doi:10.1155/s1073792804132340
[20] Journé, J.; Soffer, A.; Sogge, C., Decay estimates for Schrödinger operators, Commun. Pure Appl. Math., 44, 573-604 (1991) · Zbl 0743.35008 · doi:10.1002/cpa.3160440504
[21] Mizumachi, T., Asymptotic stability of small solitons to 1D NLS with potential, J. Math. Kyoto Univ., 48, 3, 471-497 (2008) · Zbl 1175.35138 · doi:10.1215/kjm/1250271380
[22] Mizumachi, T., Asymptotic stability of small solitons for 2D nonlinear Schrödinger equations with potential, J. Math. Kyoto Univ., 47, 599-620 (2007) · Zbl 1146.35085 · doi:10.1215/kjm/1250281026
[23] Munoz, C., On the soliton dynamics under slowly varying medium for Nonlinear Schrödinger equations, Math. Ann., 353, 867-943 (2012) · Zbl 1291.35264 · doi:10.1007/s00208-011-0706-8
[24] Nakanishi, K., Global dynamics below excited solitons for the nonlinear Schrödinger equation with a potential, J. Math. Soc. Jpn., 69, 1353-1401 (2017) · Zbl 1383.35213 · doi:10.2969/jmsj/06941353
[25] Soffer, A.; Weinstein, M., Multichannel nonlinear scattering theory for nonintegrable equations, II. The case of anisotropic potentials and data, J. Differ. Equations, 98, 376-390 (1992) · Zbl 0795.35073 · doi:10.1016/0022-0396(92)90098-8
[26] Soffer, A.; Weinstein, M., Selection of the ground state for nonlinear Schrödinger equations, Rev. Math. Phys., 16, 977-1071 (2004) · Zbl 1111.81313 · doi:10.1142/s0129055x04002175
[27] Tsai, T.-P., Asymptotic dynamics of nonlinear Schrödinger equations with many bound states, J. Differ. Equations, 192, 225-282 (2003) · Zbl 1038.35128 · doi:10.1016/s0022-0396(03)00041-x
[28] Tsai, T.-P.; Yau, H.-T., Asymptotic dynamics of nonlinear Schrödinger equations: Resonance-dominated and dispersion-dominated solutions, Commun. Pure Appl. Math., 55, 153-216 (2002) · Zbl 1031.35137 · doi:10.1002/cpa.3012
[29] Tsai, T.-P.; Yau, H.-T., Relaxation of excited states of nonlinear Schrödinger equations, Int. Math. Res. Not., 2002, 31, 1629-1673 · Zbl 1011.35120 · doi:10.1155/s1073792802201063
[30] Tsai, T.-P.; Yau, H.-T., Stable directions for excited states of nonlinear Schrödinger equations, Commun. Partial Differ. Equations, 27, 2363-2402 (2002) · Zbl 1021.35113 · doi:10.1081/pde-120016161
[31] Tsai, T.-P.; Yau, H.-T., Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data, Adv. Theor. Math. Phys., 6, 107-139 (2002) · Zbl 1033.81034 · doi:10.4310/atmp.2002.v6.n1.a2
[32] Zhou, G.; Sigal, I., Asymptotic stability of trapped solitons of nonlinear Schrödinger equations with potential, Rev. Math. Phys., 17, 1143-1207 (2005) · Zbl 1086.82013 · doi:10.1142/s0129055x05002522
[33] Zhou, G.; Sigal, I., On soliton dynamics in nonlinear Schrödinger equations, Geom. Funct. Anal., 16, 1377-1390 (2006) · Zbl 1110.35084 · doi:10.1007/s00039-006-0587-2
[34] Zhou, G.; Sigal, I., Relaxation of solitons in Nonlinear Schrödinger equations with potential, Adv. Math., 216, 443-490 (2007) · Zbl 1126.35065 · doi:10.1016/j.aim.2007.04.018
[35] Buslaev, V.; Perelman, G., Nonlinear scattering: The states which are close to a soliton, J. Math. Sci., 77, 3161-3169 (1995) · Zbl 0836.35146 · doi:10.1007/bf02364705
[36] Buslaev, V.; Perelman, G., On the stability of solitary waves for nonlinear Schrödinger equations in nonlinear evolution equations, Am. Math. Soc. Tran. Ser. 2, 164, 75-98 (1995) · Zbl 0841.35108 · doi:10.1090/trans2/164/04
[37] Buslaev, V.; Sulem, C., On the asymptotic sability of solitary waves of Nonlinear Schrödinger equations, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 20, 419-475 (2003) · Zbl 1028.35139 · doi:10.1016/s0294-1449(02)00018-5
[38] Cuccagna, S., Stabilization of solutions to nonlinear Schrödinger equations, Commun. Pure Appl. Math., 54, 1110-1145 (2001) · Zbl 1031.35129 · doi:10.1002/cpa.1018
[39] Cuccagna, S., On asymptotic stability of ground states of NLS, Rev. Math. Phys., 15, 877-903 (2003) · Zbl 1084.35089 · doi:10.1142/s0129055x03001849
[40] Cuccagna, S., On asymptotic stability of moving ground states of the nonlinear Schrödinger equation, Trans. Am. Math. Soc., 366, 2827-2888 (2014) · Zbl 1293.35289 · doi:10.1090/s0002-9947-2014-05770-x
[41] Cuccagna, S.; Mizumachi, T., On asymptotic stability in energy space of ground states for Nonlinear Schrödinger equations, Commun. Math. Phys., 284, 51-77 (2008) · Zbl 1155.35092 · doi:10.1007/s00220-008-0605-3
[42] Cuccagna, S.; Tarulli, M., On asymptotic sability in energy space of ground states of NLS in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26, 1361-1386 (2009) · Zbl 1171.35470 · doi:10.1016/j.anihpc.2008.12.001
[43] Perelman, G., Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations, Commun. Partial Differ. Equations, 29, 1051-1095 (2004) · Zbl 1067.35113 · doi:10.1081/pde-200033754
[44] Perelman, G., Two soliton collision for nonlinear Schrödinger equations in dimension 1, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 28, 357-384 (2011) · Zbl 1217.35176 · doi:10.1016/j.anihpc.2011.02.002
[45] Cuccagna, S.; Jenkins, R., On the asymptotic stability of N-soliton solutions of the defocusing nonlinear Schrödinger equation, Commun. Math. Phys., 343, 921-969 (2016) · Zbl 1342.35326 · doi:10.1007/s00220-016-2617-8
[46] Martel, Y.; Merle, F.; Tsai, T., Stability in H^1 of the sum of K solitary waves for some nonlinear Schroödinger equations, Duke Math. J., 133, 405-466 (2006) · Zbl 1099.35134 · doi:10.1215/s0012-7094-06-13331-8
[47] Nguyen, T. V., Existence of multi-solitary waves with logarithmic relative distances for the NLS equation, C. R. Math. Acad. Sci. Paris, 357, 13-58 (2019) · Zbl 1406.35367 · doi:10.1016/j.crma.2018.11.012
[48] Cote, C.; Le Coz, S., High-speed excited multi-solitons in nonlinear Schrödinger equations, J. Math. Pures Appl., 96, 135-166 (2011) · Zbl 1225.35215 · doi:10.1016/j.matpur.2011.03.004
[49] Le Coz, S.; Wu, Y., Stability of multi-solitons for the derivative nonlinear Schrödinger equation, Int. Math. Res. Not., 13, 4120-4170 (2018) · Zbl 1410.35207
[50] Martel, Y.; Merle, F., Multi solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23, 849-864 (2006) · Zbl 1133.35093 · doi:10.1016/j.anihpc.2006.01.001
[51] Miao, C.; Tang, X.; Xu, G., Stability of the traveling waves for the derivative Schrödinger equation in the energy space, Calc. Var. Partial Differ. Equations, 56, 2, 45 (2017) · Zbl 1384.35121 · doi:10.1007/s00526-017-1264-z
[52] Abou Salem, W. K.; Fröhlich, J.; Sigal, I., Colliding solitons for the non-linear Schrödinger equation, Commun. Math. Phys., 291, 151-176 (2009) · Zbl 1184.35289 · doi:10.1007/s00220-009-0871-8
[53] Abou Salem, W. K., Solitary wave dynamics in time-dependent potentials, J. Math. Phys., 49, 032101 (2008) · Zbl 1153.81428 · doi:10.1063/1.2837429
[54] Chen, G., Strichartz estimates for charge transfer models, Discrete Contin. Dyn. Syst. Ser. A, 37, 1201-1226 (2017) · Zbl 1365.35150 · doi:10.3934/dcds.2017050
[55] Deng, Q.; Soffer, A.; Yao, X., Endpoint Strichartz estimates for charge transfer Hamiltonians, Indiana Univ. Math. J, 67, 2487-2522 (2018) · Zbl 1412.35281 · doi:10.1512/iumj.2018.67.7528
[56] Deng, Q.; Soffer, A.; Yao, X., Soliton-potential interactions for nonlinear Schrödinger equation in \(\mathbb{R}^3\), SIAM. J. Math. Anal., 50, 5243-5292 (2018) · Zbl 1428.35500 · doi:10.1137/17m1147275
[57] Graf, J., Phase space analysis of the charge transfer model, Helv. Phys. Acta, 63, 107-138 (1990) · Zbl 0741.35050 · doi:10.1002/hlca.19900730108
[58] Wüller, U., Geometric methods in scattering theory of the charge transfer model, Duke Math J, 62, 273-313 (1991) · Zbl 0732.35055 · doi:10.1215/s0012-7094-91-06212-5
[59] Yajima, K., A multichannel scattering theory for some time dependent Hamiltonians, charge transfer problem, Commun. Math. Phys., 75, 153-178 (1980) · Zbl 0437.47008 · doi:10.1007/bf01222515
[60] Zielinski, L., Asymptotic completeness for multiparticle dispersive charge transfer models, J. Funct. Anal., 150, 453-470 (1997) · Zbl 0891.35134 · doi:10.1006/jfan.1997.3119
[61] Beceanu, M., New estimates for a time-dependent Schrödinger equation, Duke Math. J, 159, 417-477 (2011) · Zbl 1229.35224 · doi:10.1215/00127094-1433394
[62] Rodnianski, I.; Schlag, W.; Soffer, A., Dispersive analysis of charge transfer models, Commun. Pure Appl. Math., 58, 149-216 (2005) · Zbl 1130.81053 · doi:10.1002/cpa.20066
[63] Cazenave, T., Semilinear Schrödinger Equations (2003), American Mathematical Society: American Mathematical Society, Providence · Zbl 1055.35003
[64] Avron, J. E.; Seiler, R.; Yaffe, L. G., Adiabatic theorems and applications to the quantum Hall effect, Commun. Math. Phys., 110, 33-49 (1987) · Zbl 0626.58033 · doi:10.1007/bf01209015
[65] Abou Salem, W. K.; Sulem, C., Resonant tunneling of fast solitons through large potential barriers, Can. J. Math., 63, 1201-1219 (2011) · Zbl 1247.35152 · doi:10.4153/cjm-2011-029-6
[66] Kato, T., On the adiabatic theorem of quantum mechanics, J. Phys. Soc. Jpn., 5, 435-439 (1950) · doi:10.1143/jpsj.5.435
[67] Keel, M.; Tao, T., Endpoint Strichartz estimates, Am. J. Math., 120, 955-980 (1998) · Zbl 0922.35028 · doi:10.1353/ajm.1998.0039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.