×

Metaplectic group, symplectic Cayley transform, and fractional Fourier transforms. (English) Zbl 1322.43003

At the beginning of the paper, the authors give a survey of the theory of metaplectic operators and their Maslov indices. Then they proceed to Weyl representation of metaplectic operators. In particular, they introduce the Cayley transform for symplectic matrices, which allows one to study the spreading functions of metaplectic operators. Applications to the Schrödinger equation and fractional Fourier transform are given.

MSC:

43A25 Fourier and Fourier-Stieltjes transforms on locally compact and other abelian groups
42C99 Nontrigonometric harmonic analysis
42C15 General harmonic expansions, frames
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Alieva, T.; Bastiaans, M. J., Wigner distribution and fractional Fourier transform, (Boashash, B., Time-Frequency Signal Analysis and Processing: A Comprehensive Reference, (2003), Elsevier Oxford, UK), 145-152
[2] Almeida, L. B., The fractional Fourier transform and time-frequency representations, IEEE Trans. Signal Process., 42, 11, 3084-3091, (1994)
[3] Bultheel, A.; Sulbaran, H. M., An introduction to the fractional Fourier transform and friends, Cubo Mat. Educ., 7, 2, 201-221, (2005) · Zbl 1099.42004
[4] Buslaev, V. C., Quantization and the WKB method, Tr. Mat. Inst. Steklova, 110, 5-28, (1978), (in Russian) · Zbl 0234.35011
[5] Feichtinger, H. G., Modulation spaces on locally compact abelian groups, (1983), University of Vienna, Technical Report
[6] Feichtinger, H. G.; Gröchenig, K., Gabor wavelets and the Heisenberg group: Gabor expansions and short-time Fourier transform from the group theoretical point of view, (Wavelets, Wavelet Anal. Appl., vol. 2, (1992), Acad. Press Boston), 359-397 · Zbl 0849.43003
[7] Feichtinger, H. G.; Hazewinkel, M.; Kaiblinger, N.; Matusiak, E.; Neuhauser, M., Metaplectic operators on \(\operatorname{Mp}(d)\), Quart. J. Math. Oxford Ser., 59, 1, 15-28, (2008) · Zbl 1142.22007
[8] Folland, G. B., Harmonic analysis in phase space, Ann. of Math. Stud., (1989), Princeton University Press Princeton, NJ · Zbl 0682.43001
[9] de Gosson, M., Maslov indices on \(\operatorname{Mp}(n)\), Ann. Inst. Fourier (Grenoble), 40, 3, 537-555, (1990) · Zbl 0705.22013
[10] de Gosson, M., The structure of q-symplectic geometry, J. Math. Pures Appl., 71, 429-453, (1992) · Zbl 0829.58015
[11] de Gosson, M., Maslov classes, metaplectic representation and Lagrangian quantization, Res. Notes Math., vol. 95, (1997), Wiley-VCH Berlin · Zbl 0872.58031
[12] de Gosson, M., The Weyl representation of metaplectic operators, Lett. Math. Phys., 72, 129-142, (2005) · Zbl 1115.81048
[13] de Gosson, M., Symplectic geometry and quantum mechanics, (2006), Birkhäuser Basel · Zbl 1098.81004
[14] Gröchenig, K., Foundations of time-frequency analysis, (2001), Birkhäuser Boston · Zbl 0966.42020
[15] Howe, R., The oscillator semigroup, Proc. Sympos. Pure Math., vol. 48, 61-132, (1988), Amer. Math. Soc.
[16] Kober, H., Wurzeln aus der Hankel- und Fourier und anderen stetigen transformationen, Quart. J. Math. Oxford Ser., 10, 45-49, (1939) · JFM 65.0489.01
[17] Leray, J., Lagrangian analysis and quantum mechanics: A mathematical structure related to asymptotic expansions and the Maslov index, (1981), MIT Press Cambridge, MA · Zbl 0483.35002
[18] Maslov, V. P.; Fedoriuk, M. V., Semi-classical approximations in quantum mechanics, (1981), Reidel Boston
[19] Ozaktas, H. M.; Zalevsky, Z.; Kutay, M. A., The fractional Fourier transform, with applications in optics and signal processing, (2001), John Wiley & Sons
[20] Segal, I. E., Foundations of the theory of dynamical systems of infinitely many degrees of freedom, I, Mat.-Fys. Medd. Danske Vid. Selsk., 31, 1-39, (1959) · Zbl 0085.21806
[21] Shale, D., Linear symmetries of free boson fields, Trans. Amer. Math. Soc., 103, 149-167, (1962) · Zbl 0171.46901
[22] Wallach, N., Lie groups: history, frontiers and applications, 5, symplectic geometry and Fourier analysis, (1977), Math Sci Press Brookline, MA
[23] Weil, A., Sur certains groupes d’opérateurs unitaires, Acta Math., 111, 143-211, (1964) · Zbl 0203.03305
[24] Williamson, J., On the algebraic problem concerning the normal forms of linear dynamical systems, Amer. J. Math., 58, 141-163, (1963) · JFM 63.1290.01
[25] Wong, M. W., Weyl transforms, (1998), Springer New York · Zbl 0908.44002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.