×

The symplectic group and invariants of quantum systems. (English) Zbl 0612.58042

Translation from Itogi Nauki Tekh., Ser. Mat. Anal. 22, 59-100 (Russian) (1984; Zbl 0598.58039).

MSC:

37N99 Applications of dynamical systems
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
22E70 Applications of Lie groups to the sciences; explicit representations

Citations:

Zbl 0598.58039
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] E. B. Aronson, I. A. Malkin, and V. I. Man’ko, ?Dynamic symmetry in quantum theory,? EChAYa,3, 123 (1974).
[2] V. M. Babich, ?Eigenfunctions concentrated in a neighborhood of a closed geodesic,? Zap. Nauch. Sem. Leningr. Otd. Mat. Inst. AN SSSR,9, 15?63 (1968). · Zbl 0207.11001
[3] V. S. Buslaev, ?Continuum integrals and asymptotics of solutions of parabolic equations t ? ?. Applications to diffraction,? in: Probl. Mat. Fiz., No. 2, Leningr. Univ., Leningrad (1967), pp. 85?107. · Zbl 0164.12602
[4] Ya. K. Granovskii, Yu. A. Dimashko, and A. S. Zhedanov, ?Parametric instability of linear systems in quantum theory,? Izv. Vyssh. Uchebn. Zaved., Fiz., No. 2, 77?98 (1980).
[5] V. V. Dodonov, I. A. Malkin, and V. I. Man’ko, ?Invariants, the Green function, and coherent states of dynamical systems,? Teor. Mat. Fiz.,24, No. 2, 164?176 (1975).
[6] V. V. Dodonov and V. I. Man’ko, ?Integrals of the motion and the dynamics of time-dependent quadratic Fermi-Bose systems of general form,? Tr. Fiz. Inst. AN SSSR,152, 145?193 (1983).
[7] V. V. Dodonov, V. I. Man’ko, and S. M. Chumakov, ?The density matrix and excitation of the singular oscillator with a variable frequency at finite temperature,? in: Group Theory Methods in Physics [in Russian], Vol. 2, Nauka, Moscow (1983), pp. 123?140.
[8] E. V. Doktorov, Dissertation, Minsk, FIAN BSSR (1974).
[9] S. G. Krivoshlykov and I. N. Sisakyan, ?Coherent states and the nonparaxial propagation of light in gradient media,? Kvantovaya Elektron., No. 4, 735?740 (1983).
[10] I. A. Malkin, ?Dynamic symmetry of time-dependent systems,? Tr. Mosk. Fiz.-Tekh. Inst. No. 8, 206 (1976).
[11] I. A. Malkin, ?Methods of dynamic symmetry in quantum mechanics,? Uchebn. Posobie. Mosk. Fiz.-Tekh. Inst., 116 (1979).
[12] I. A. Malkin and V. I. Man’ko, ?Coherent states and transitions between Landau levels,? Zh. Eksp. Teor. Fiz.,59, 1746 (1970).
[13] I. A. Malkin and V. I. Man’ko, Dynamic Symmetries and Coherent States of Quantum Systems [in Russian], Nauka, Moscow (1979).
[14] V. I. Man’ko, ?The method of coherent states and integrals of the motion,? in: Quantum Electrodynamics with an External Field [in Russian] (1977), pp. 101?119.
[15] V. I. Manko and D. A. Trifonov, ?Matrix elements of finite transformations of Lie groups in the basis of coherent and Fock states,? in: Group-Theoretic Methods in Physics [in Russian], Vol. 2, Nauka, Moscow (1983), pp. 46?57.
[16] M. M. Popov, ?The Green function of the Schrödinger equation with a quadratic potential,? in: Probl. Mat. Fiz., No. 6, Leningr. Univ., Leningrad (1973), pp. 119?125.
[17] D. A. Trifonov, Dissertation, Moscow, FIAN SSSR (1972).
[18] R. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill (1965). · Zbl 0176.54902
[19] A. Holtz, ?The N-dimensional anisotropic oscillator in a homogeneous electromagnetic field depending on time,? in: Coherent States in Quantum Theory [Russian translation], Mir, Moscow (1972), pp. 178?183.
[20] N. A. Chernikov, ?A system with a Hamiltonian in the form of a quadratic form in p and x depending on time,? Zh. Eksp. Teor. Fiz.,53, No. 3 (9), 1006?1017 (1967).
[21] V. M. Chetverikov, ?The Green function of a spatial oscillator in a variable homogeneous electromagnetic field,? Izv. Vyssh. Uchebn. Zaved., Fiz., No. 3, 17?22 (1975).
[22] A. O. Barut, ?Dynamical groups,? Phys. Rev.,B839, B135 (1964).
[23] W. B. Campbell, P. Finkler, C. E. Jones, and M. N. Misheloff, ?Path integral formulation for eigenfunctions,? Nuovo Cimento,B31, 219?224 (1976).
[24] V. V. Dodonov and V. I. Man’ko, ?Integrals of the motion of pure and mixed quantum systems,? Physica,A94, No. 3, 403?412 (1978).
[25] V. V. Dodonov and V. I. Man’ko, ?Loss-energy states of nonstationary quantum systems,? Nuovo Cimento,B44, No. 2, 265?273 (1978).
[26] V. V. Dodonov and V. I. Man’ko, ?Coherent states and the resonance of a quantum damped oscillator,? Phys. Rev.,A20, No. 2, 550?560 (1979).
[27] V. V. Dodonov, E. V. Murmyshev, and V. I. Man’ko, ?Exact Green function of a damped oscillator,? Phys. Lett.,A72, No. 1, 10?12 (1979).
[28] V. V. Dodonov, I. A. Malkin, and V. I. Man’ko, ?The Green function and thermodynamical properties of quadratic systems,? J. Phys.,A8, No. 2, L19-L22 (1975).
[29] V. V. Dodonov, I. A. Malkin, and V. I. Man’ko, ?Integrals of the motion, Green functions and coherent states of dynamical systems. I? Int. J. Theor. Phys.,14, No. 1, 37?54 (1975).
[30] V. V. Dodonov, I. A. Malkin, and V. I. Man’ko, ?Coherent states of a charged particle in a time-dependent uniform electromagnetic field of a plane current,? Physica,59, No. 2, 241?256 (1972).
[31] V. V. Dodonov, V. I. Man’ko, and V. V. Semjonov, ?The density matrix of the canonical transformation of a multidimensional Hamiltonian in the Fock basis,? Preprint FIAN, No. 78 (1984).
[32] Y. Dothann, M. Gellmann, and Y. Neeman, ?Spectrum generating algebras,? Phys. Lett.,17, 148 (1965).
[33] R. J. Glauber, ?Coherent states of the harmonic oscillator,? Phys. Rev. Lett.,10, 84 (1963). · Zbl 0145.24003
[34] E. Hill and H. Jauch, ?Unitary symmetry of the oscillator,? Phys. Rev.,57, 64 (1940). · Zbl 0027.19001
[35] K. Husimi, ?Miscellanea in elementary quantum mechanics. II,? Progr. Theor. Phys.,9, No. 4, 381?402 (1953). · Zbl 0050.22002
[36] J. R. Klauder, ?Continuous-representation theory. I. Postulates of continuous-representation theory,? J. Math. Phys.,4, No. 8, 1055?1058 (1963). · Zbl 0127.18701
[37] J. R. Klauder, ?Groups and continuous representations,? J. Math. Phys.,5, 177 (1964). · Zbl 0137.23901
[38] H. R. Lewis and W. B. Riesenfeld, ?An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,? J. Math. Phys.,10, No. 8, 1458?1473 (1969). · Zbl 1317.81109
[39] I. A. Malkin, V. I. Man’ko, and D. A. Trifonov, ?Linear adiabatic invariants and coherent states,? J. Math. Phys.,14, 576?582 (1973).
[40] I. A. Malkin and V. I. Man’ko, ?Coherent states and adding formulas for Hermite polynomials of several variables,? Preprint No. 155, P. N. Lebedev Physical Institute (1974).
[41] V. I. Man’ko, ?Invariants and symmetries of dynamical systems,? Proceedings of the 2nd International Colloq. on Group Theoretical Methods in Physics, June 25?29, 1974, University of Nihmegen, Netherlands, Vol. 1 (1973), pp. A107-A136.
[42] V. I. Man’ko, ?Invariants of quantum systems,? Proc. of 12th Colloq. Group-Theoretical Methods in Physics, Triest, Springer (1984), pp. 128?135.
[43] N. Mukunda, L. O’Raifeertaigh, and E. Sudarshan, ?Noninvariance groups,? Phys. Rev. Lett.,15, 1041 (1965); Phys. Lett.,19, 322 (1965).
[44] S. G. Sudarchan, ?Quantum distributions,? Phys. Rev. Lett.,10, 277 (1963). · Zbl 0113.21305
[45] U. M. Titulaer and R. J. Glauber, ?P-distribution functions,? Phys. Rev. Lett.,140, 13676 (1965).
[46] D. A. Trifonov, P. Christova, and G. Milonov, ?Singular oscillator,? Ann. Inst. Pedagog. Sup. Shoumen,5, 49 (1981).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.