Geometry of KdV. IV: Abel sums, Jacobi variety, and theta function in the scattering case. (English) Zbl 0714.35074

[For part II see the second author, J. Stat. Phys. 46, No.5-6, 1115-1143 (1987; Zbl 0689.35076); part III is to appear.]
The authors study the geometry of Korteweg-de Vries equations with Abel sums, Jacobi variety, and theta function in the scattering case. They identify the “curve”, “theta function”, and “theta divisor”, and confirm that they share much of the familiar beautiful geometry. A cursory view of the full phase geometry is presented. But the principal object of study is a single invariant manifold and its complexification.
[For part V see the second author, Commun. Pure Appl. Math. 42, No.5, 687-701 (1989; Zbl 0699.58062).]
Reviewer: N.L.Maria


35Q53 KdV equations (Korteweg-de Vries equations)
14K25 Theta functions and abelian varieties
Full Text: DOI EuDML


[1] Airault, H., McKean, H.P., Moser, J.: Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem. Commun. Pure Appl. Math.30, 95 (1977) · Zbl 0338.35024
[2] Arbarbello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves. New York Berlin Heidelberg: Springer 1985 · Zbl 0559.14017
[3] Baker, H.: Theorem and the Allied Theory, Including the Theory of the Theta Function. Cambridge: Cambridge University Press 1897 · JFM 28.0331.01
[4] Birnir, B.: Complex Hill’s equation and the complex periodic korteweg-de Vries equation. Commun. Pure Appl. Math.39, 2 (1986) · Zbl 0592.47004
[5] Buslaev, V.S., Faddeev, L.D., Takhtajian, L.A.: Scattering theory for the KDV equation and its Hamiltonian interpretation. Physica18D, 255 (1986) · Zbl 0618.35100
[6] Darboux, L.: Sur une proposition relative aux équations linéaires. CR Acad. Sci. Paris94, 1456 (1882) · JFM 14.0264.01
[7] Deift, P., Trubowitz, E.: Inverse scattering on the line. Commun. Pure Appl. Math.32, 121 (1979) · Zbl 0395.34019
[8] Dyson, F.: Fredholm determinants and inverse scattering problems. Commentat. Math. Phys.47, 171 (1976) · Zbl 0323.33008
[9] Ercolani, N.M., McKean, H.P.: A Quick Proof of Fay’s Secant Formulae. 1988 · Zbl 0719.14029
[10] Faddeev, L.: On the relation between theS-matrix and the potential of the one-dimensional Schrödinger equation. Tr. Mat. Inst. Stekolva73, 314 (1964); AMST65, 139
[11] Fay, J.: Theta Functions on Riemann Surfaces. (Lect. Notes Math. vol.352). Berlin Heidelberg New York: Springer 1973 · Zbl 0281.30013
[12] Gardner, C., Greene, J., Kruskal, M., Miura, R.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett.19, 1095 (1967) · Zbl 1103.35360
[13] Gelfand, I.M., Levitan, B.: On the determination of a differential equation from its spectral function. Izv. Mat., Nauk.15, 309 (1951); AMST1, 253 (1955)
[14] Its, A., Matveev, V.: Hill’s operator with a finite number of lacunae. Funkts. Anal. Prilozh.9, 69, (1975) · Zbl 0317.14013
[15] Kempf, G.: On the geometry of a theorem of Riemann. Ann. Math.98, 178 (1973) · Zbl 0275.14023
[16] Marcenko, V.A.: The construction of the potential energy from the phases of the scattered waves. Dokl., Akad. Nauk. SSSR104, 695 (1955)
[17] Marcenko, V., Ostrovskii, I.V.: A characterization of the spectrum of Hill’s operator. Sov. Math. Dokl.16, 761 (1975); Mat. Sbornik139, 540 (1975) · Zbl 0342.34014
[18] McKean, H.P., Van Moerbeke, P.: The spectrum of Hill’s equation. Invent. Math.30, 217 (1975) · Zbl 0319.34024
[19] McKean, H.P.: Theta functions, solutions and singular curves. In: Byrnes, C.I (ed.) PDE and Geometry. Proc. Park City Conference (1977) p. 237
[20] McKean, H.P., Trubowitz, E.: Hill’s surfaces and their theta functions. Bull. Am. Math. Soc.84, 1042 (1978) · Zbl 0428.34026
[21] McKean, H.P.: Integrable systems and algebraic curves. (Lect. Notes Math. vol.755 p. 83). Berlin Heidelberg New York: Springer 1979 · Zbl 0449.35080
[22] McKean, H.P.: Geometry of KDV (1): Addition and the unimodular spectral classes. Rev. Math. Hispo.-Am.2, 235 (1986) · Zbl 0651.35074
[23] McKean, H.P.: Geometry of KDV (2): three Examples. J. Stat. Phys.46, 1115 (1987) · Zbl 0689.35076
[24] Riemann, G.F.B.: Theorie, der Abel’schen Functionen. J. Reine Angew. Math.54, 115 (1857) · ERAM 054.1427cj
[25] Venakides, S.: The infinite period limit of the inverse formalism for periodic potentials. Commun. Pure Appl. Math.41, 1 (1988) · Zbl 0663.34028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.