×

The scattering matrix and associated formulas in Hamiltonian mechanics. (English) Zbl 1218.37072

Authors’ abstract: “We prove two new identities in scattering theory in Hamiltonian mechanics and discuss the analogy between these identities and their counterparts in quantum scattering theory. These identities involve the Poincaré scattering map, which is analogous to the scattering matrix. The first of our identities states that the Calabi invariant of the Poincaré scattering map can be expressed as the regularised phase space volume. This is analogous to the Birman-Krein formula. The second identity relates the Poincaré scattering map to the total time delay and is analogous to the Eisenbud-Wigner formula.”

MSC:

37J05 Relations of dynamical systems with symplectic geometry and topology (MSC2010)
37J10 Symplectic mappings, fixed points (dynamical systems) (MSC2010)
34L25 Scattering theory, inverse scattering involving ordinary differential operators
35P25 Scattering theory for PDEs
81U20 \(S\)-matrix theory, etc. in quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abraham, R., Marsden, J.E.: Foundations of Mechanics. Second edition. Reading, MA: Benjamin/Cummings Publishing Co., 1978 · Zbl 0393.70001
[2] Birman M.Sh., Krein M.G.: On the theory of wave operators and scattering operators. Soviet Math. Dokl. 3, 740–744 (1962) · Zbl 0196.45004
[3] Alexandrova I.: Structure of the short range amplitude for general scattering relations. Asymptot. Anal. 50(1–2), 13–30 (2006) · Zbl 1135.35055
[4] Birman M.Sh., Yafaev D.R.: The spectral shift function. The work of M. G. Krein and its further development. St. Petersburg Math. J. 4(5), 833–870 (1993)
[5] Bollé, D.: On classical time delay. In: New Developments in Mathematical Physics, Edited by H. Mitter and L. Pittner, Berlin-Heidelberg-New York: Springer, 1981
[6] Bollé D., Osborn T.A.: Sum rules in classical scattering. J. Math. Phys. 22(4), 883–892 (1981) · doi:10.1063/1.524955
[7] Buslaev, V.S.: The trace formulae and certain asymptotic estimates of the kernel of the resolvent for the Schrödinger operator in three- dimensional space. (in Russian). Probl. Math. Phys., No. I, Spectral Theory and Wave Processes, Leningrad: Izdat. Leningrad. Univ., 1966, pp. 82–101 · Zbl 0203.13403
[8] Buslaev V.S., Faddeev L.D.: Formulas for traces for a singular Sturm-Liouville differential operator (in Russian). Soviet Math. Dokl. 1, 451–454 (1960) · Zbl 0129.06501
[9] Jensen A.: Time-delay in potential scattering theory. Commun. Math. Phys. 82, 435–456 (1981) · Zbl 0483.47031 · doi:10.1007/BF01237049
[10] de Carvalho C.A.A., Nussenzveig H.M.: Time delay. Phys. Rep. 364, 83–174 (2002) · Zbl 0994.81019 · doi:10.1016/S0370-1573(01)00092-8
[11] Doron, E., Smilansky, U.: A scattering theory approach to semiclassical quantization. In: Lecture notes, Summer School ”Mesoscopic systems and chaos: a novel approach”, 3–6 August 1993, Adratico Res. Conf., Singapore: World Scientific, 1995
[12] Gérard C., Tiedra de Aldecoa R.: Generalized definition of time delay in scattering theory. J. Math. Phys. 48(12), 122101 (2007) · Zbl 1153.81365 · doi:10.1063/1.2816255
[13] Herbst I.: Classical scattering with long range forces. Commun. Math. Phys. 35, 193–214 (1974) · Zbl 0309.70011 · doi:10.1007/BF01646193
[14] Hunziker W.: The S-Matrix in Classical Mechanics. Commun. Math. Phys. 8(4), 282–299 (1968) · Zbl 0159.55001 · doi:10.1007/BF01646269
[15] Jung C.: Poincaré map for scattering states. J. Phys. A 19, 1345–1353 (1986) · Zbl 0619.58025 · doi:10.1088/0305-4470/19/8/016
[16] Knauf A.: Qualitative aspects of classical potential scattering. Regul. Chaotic Dyn. 4(1), 3–22 (1999) · Zbl 0982.81054 · doi:10.1070/rd1999v004n01ABEH000096
[17] Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics. Vol. 1. Mechanics. Third edition. Oxford-New York-Toronto: Pergamon Press, 1976
[18] Lifshits I.M.: On the problem of scattering of particles by a centrally symmetric field in quantum mechanics (in Russian). Khar’kov Gos. Univ. Uchen. Zap. 27, 105–107 (1948)
[19] Lewenkopf C.H., Vallejos R.O.: On the classical-quantum correspondence for the scattering dwell time. Phys. Rev. E 70, 036214 (2004) · Zbl 1045.81051 · doi:10.1103/PhysRevE.70.036214
[20] McDuff D., Salamon D.: Introduction to Symplectic Topology, Oxford, Oxford University Press (1998) · Zbl 0844.58029
[21] Narnhofer H.: Another definition for time delay. Phys. Rev. D 22(10), 2387–2390 (1980) · doi:10.1103/PhysRevD.22.2387
[22] Narnhofer H., Thirring W.: Canonical scattering transformation in classical mechanics. Phys. Rev. A 23(4), 1688–1697 (1981) · doi:10.1103/PhysRevA.23.1688
[23] Reed M., Simon B.: Methods of Modern Mathematical Physics. Vol. 1: Functional analysis. Academic Press, New York (1972) · Zbl 0242.46001
[24] Simon B.: Wave operators for classical particle scattering. Commun. Math. Phys. 23, 37–48 (1971) · Zbl 0238.70012 · doi:10.1007/BF01877595
[25] Robert D.: Relative time-delay for perturbations of elliptic operators and semiclassical asymptotics. J. Funct. Anal. 126(1), 36–82 (1994) · Zbl 0813.35073 · doi:10.1006/jfan.1994.1141
[26] Robert, D.: Semiclassical asymptotics for the spectral shift function. In: Differential Operators and Spectral Theory, Amer. Math. Soc. Transl. Ser. 2, 189, Providence, RI: Amer. Math. Soc., 1999, pp. 187–203 · Zbl 0922.35108
[27] Rouvinez C., Smilansky U.: A Scattering Approach to the quantization of Hamiltonians in 2 Dimensions–Application to the Wedge Billiard. J. Phys. A: Math. Gen. 28, 77–104 (1995) · Zbl 0868.58040 · doi:10.1088/0305-4470/28/1/014
[28] Sassoli de Bianchi M., Martin Ph.A.: On the definition of time delay in scattering theory. Helv. Phys. Acta 65(8), 1119–1126 (1992)
[29] Thirring, W.: Classical Scattering Theory, In: New Developments in Mathematical Physics, Edited by H. Mitter, L. Pittner, Berlin-Heidelberg-New York: Springer, 1981 · Zbl 0462.46046
[30] Thirring, W.: Classical Mathematical Physics. Dynamical Systems and Field Theories. Third edition. New York: Springer-Verlag, 1997 · Zbl 1017.82003
[31] Vaĭnberg B.R.: Asymptotic Methods in Equations of Mathematical Physics. Gordon & Breach, New York (1989)
[32] Yafaev D.R.: Mathematical Scattering Theory. General theory. Providence, RI: Amer. Math. Soc., 1992 · Zbl 0761.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.