## Diffraction of a skew incident plane electromagnetic wave by an impedance wedge.(English)Zbl 1231.78028

Summary: This paper studies one of the canonical problems in the diffraction theory, i.e. determining exactly the field distribution, excited by a skew incident plane electromagnetic wave of arbitrary polarization, outside of a wedge on whose faces boundary conditions of Leontovich type are imposed on the electromagnetic field. To this end, the Sommerfeld-Malyuzhinets technique is used at first to deduce from the impedance type conditions on the wedge faces a matrix difference equation of dimension four for the two spectra (spectral functions) of the field components that are parallel to the edge of the wedge. Eliminating one of the spectra in the matrix functional difference (FD) equation yields a though more complicated but scalar difference equation for the other spectrum. Use is then made of a special function $$\chi _{\Phi } (\alpha )$$, a generalization of the eponymous Malyuzhinets function, to transform this difference equation into one with constant coefficients at its left-hand side. Taking into account the asymptotic behavior of the spectrum, originating from the Meixner edge condition, the poles and their respective residues of the spectrum in the basic strip of the complex plane, an integral equivalent to this difference relation turns out in terms of the so-called S-integral. For points on the imaginary axis which belongs to the basic strip in the complex plane, the integral equivalent becomes a Fredholm integral equation of the second kind for the spectrum there. Solving the integral equation by means of, e.g. the quadrature method, the spectrum on the imaginary axis can be obtained, therefore, with help of the integral expression, the spectrum in the basic strip, and outside of it by analytical continuation. A first-order uniform asymptotic solution for points far away from the edge of the wedge follows from an application of the saddle point method. Comparison with available results in several special cases show that this approach leads to a fast and accurate solution of the problem under study. The typical behavior of such a diffraction problem, namely, the depolarization of the diffracted waves for skew incidence, is also demonstrated with examples.

### MSC:

 78A45 Diffraction, scattering
Full Text:

### References:

 [1] Sommerfeld, A., Mathematische theorie der diffraction, Math. ann., 47, 317-374, (1896) · JFM 27.0706.03 [2] G.D. Maliuzhinets [Malyuzhinets], Inversion formula for the Sommerfeld integral, Soviet Physics: Doklady, 3 (1) (1958) 52-56. [3] G.D. Maliuzhinets [Malyuzhinets], Excitation, reflection and emission of surface waves from a wedge with given face impedances, Soviet Physics: Doklady, 3 (4) (1958) 752-755. [4] Sommerfeld, A., Theorie der beugung, (), (Chapter 20) · JFM 43.1012.03 [5] Sommerfeld, A., Optik, vol. 4 of vorlesungen über theoretische physik, (1989), Verlag Harri Deutsch Frankfurt am Main [6] Malyuzhinets, G.D., Sommerfeld integrals and their applications, (1981), Central Scientific-Research Institute “Rumb” Leningrad · Zbl 0089.08803 [7] Bucci, O.M.; Franceschetti, G., Electromagnetic scattering by a half-plane with two face impedances, Radio sci., 11, 1, 49-59, (1976) [8] Vaccaro, V.G., The generalized reflection method in electromagnetism, Arch. elek. übertragung, 34, 12, 493-500, (1980) [9] Vaccaro, V.G., Electromagnetic diffraction from a right-angled wedge with soft conditions on one face, Opt. acta, 28, 3, 293-311, (1981) [10] Budaev, B.V., Diffraction by wedges, vol. 322 of Pitman research notes in mathematics, (1995), Longman Scientific and Technical Essex [11] Rubinowicz, A., Die beugungswelle in der kirchhoffschen theorie der beugung, (1966), Springer-Verlag Berlin · Zbl 0080.20701 [12] Senior, T.B.A.; Volakis, J.L., Approximate boundary conditions in electromagnetics, vol. 41 of IEE electromagnetic wave series, (1995), The Institution of Electrical Engineers London · Zbl 0828.73001 [13] Buldyrev, V.S.; Lyalinov, M.A., Mathematical methods in modern electromagnetic diffraction theory, vol. 1 of international series of monographs on advanced electromagnetics, (2001), Science House Co. Tokyo [14] V.M. Babich, M.A. Lyalinov, V.E. Grikurov, The Sommerfeld-Malyuzhinets Method in Diffraction Theory, St. Petersburg University Press, St. Petersburg, 2004. English translation to appear, Oxford: Alpha Science, 2006. [15] DeWitt Morette, C.; Low, S.G.; Schulman, L.S.; Shiekh, A.Y., Wedges I, Found. phys., 16, 4, 311-349, (1986) [16] Osipov, A.V.; Norris, A.N., The malyuzhinets theory for scattering from wedge boundaries: a review, Wave motion, 29, 313-340, (1999) · Zbl 1074.76611 [17] M.A. Lyalinov, Coupled Maliuzhinets’ equations and their direct reduction to the Fredholm-type integral equations, in: Books of Abstract, 4th Int. Cong. on Industrial and Applied Mathematics (Edinburgh, UK), July 5th-9th 1999. [18] Lyalinov, M.A.; Zhu, N.Y., A solution procedure for second-order difference equations and its application to electromagnetic-wave diffraction in a wedge-shaped region, Proc. R. soc. lond. A., 2003, 2040, 3159-3180, (2003) · Zbl 1092.78008 [19] Zhu, N.Y.; Lyalinov, M.A., Diffraction of a normally incident plane wave by an impedance wedge with its exterior bisected by a semi-infinite impedance sheet, IEEE trans. antennas propagat., AP-52, 10, 2753-2758, (2004) [20] A.V. Osipov, A hybrid technique for the analysis of scattering by impedance wedges, in: Proc. URSI Int. Symp. Electromag. Theory, vol. 2 (Pisa, Italy), pp. 1140-1142, May 23rd-27th 2004. [21] Budaev, B.V.; Body, D.D., Diffraction of a plane skew electromagnetic wave by a wedge with general anisotropic impedance boundary conditions, IEEE trans. antennas propagat., AP-54, 5, 1559-1567, (2006) · Zbl 1369.78153 [22] Bobrovnikov, M.S.; Fisanov, V.V., Diffraction of waves in angular regions, (1988), Tomsk University Press Tomsk, Russia [23] Tuzhilin, A.A., On the theory of inhomogeneous malyuzhinets’ functional equations, Diff. uravn., 9, 11, 2058-2064, (1973) [24] Lipszyc, K., On the application of the sommerfeld – maluzhinetz transformation to some one-dimensional three-particle problems, J. math. phys., 21, 5, 1092-1102, (1980) [25] Dmitrieva, L.A.; Kuperin, Y.A.; Rudin, G.E., Extended class of dubrovin’s equations related to the one-dimensional quantum three-body problem, Comput. math. appl., 34, 5/6, 571-585, (1997) · Zbl 0897.47055 [26] Jost, R., Lineare differenzengleichungen mit periodischen koeffizienten, Comment. mathe. helv., 28, 173-185, (1954) · Zbl 0056.09101 [27] Jost, R., Mathematical analysis of a simple model for the stripping reaction, Z. angew. math. phys., 6, 316-326, (1955) · Zbl 0067.33503 [28] Albeverio, S., Analytische Lösung eines idealisierten stripping- oder beugungsproblems, Helv. phys. acta, 40, 135-184, (1967) · Zbl 0154.46403 [29] Gaudin, M.; Derrida, B., Solution exacte d’un probléme modéle a trois corps. état lié, J. phys., 36, 12, 1183-1197, (1975) [30] Albeverio, S.; Kurasov, P., Singular perturbations of differential operators. solvable Schrödinger type operators, vol. 271 of London mathematical society lecture note series, (2000), Cambridge University Press Cambridge [31] Buslaev, V.; Fedotov, A., On the difference equations with periodic coefficients, Adv. theor. math. phys., 5, 6, 1105-1168, (2001) · Zbl 1012.39008 [32] Komarov, I.V., Various approaches to spectral problems for integrable systems in the QISM, Int. J. mod. phys. A, 40, 79-87, (1997) · Zbl 1073.81665 [33] Demetrescu, C.; Constantinou, C.C.; Mehler, M.J.; Budaev, B.V., Diffraction by a resistive sheet attached to a two-sided impedance plane, Electromagnetics, 18, 315-332, (1998) [34] Demetrescu, C.; Constantinou, C.C.; Mehler, M.J., Diffraction by a right-angled resistive wedge, Radio sci., 33, 1, 39-53, (1998) [35] Senior, T.B.A.; Legault, S.R., Second-order difference equations in diffraction theory, Radio sci., 35, 3, 683-690, (2000) [36] Senior, T.B.A.; Legault, S.R.; Volakis, J.L., A novel technique for the solution of second-order difference equations, IEEE trans. antennas propagat., AP-49, 12, 1612-1617, (2001) · Zbl 1001.78024 [37] Legault, S.R.; Senior, T.B.A., Solution of a second order difference equation using the bilinear relations of Riemann, J. math. phys., 43, 3, 1598-1621, (2002) · Zbl 1059.39002 [38] Antipov, Y.A.; Silvestrov, V.V., Vector functional-difference equation in electromagnetic scattering, IMA J. appl. math., 69, 1, 27-69, (2004) · Zbl 1059.78013 [39] Antipov, Y.A.; Silvestrov, V.V., Second-order functional-difference equations. I: method of the riemann – hilbert problem on Riemann surfaces, Q. J. mech. appl. math., 57, 2, 245-265, (2004) · Zbl 1064.39016 [40] Antipov, Y.A.; Silvestrov, V.V., Second-order functional-difference equations. II: scattering from a right-angled conductive wedge for E-polarization, Q. J. mech. appl. math., 57, 2, 267-313, (2004) · Zbl 1064.39017 [41] J.-M.L. Bernard, Méthode analytique et transformées fonctionnelles pour la diffraction d’ondes par une singularité conique: équation intégrale de noyau non oscillant pour le cas d’impédance constante, Tech. Rep. CEA-R-5764, CEA, Saclay, France, September 1997. [42] Bernard, J.M.L.; Lyalinov, M.A., Spectral domain solution and asymptotics for the diffraction by an impedance cone, IEEE trans. antennas propagat., AP-49, 1633-1637, (2001) · Zbl 1002.78510 [43] Antipov, Y.A., Diffraction of a plane wave by a circular cone with an impedance boundary condition, SIAM J. appl. math., 62, 4, 1122-1152, (2002) · Zbl 1004.65121 [44] Leontovich, M.A., Approximate boundary conditions for electromagnetic waves on surfaces of good conducting bodies, (), 5-12 [45] Lyalinov, M.A.; Zhu, N.Y., Diffraction of a skewly incident plane wave by an anisotropic impedance wedge – a class of exactly solvable cases, Wave motion, 30, 3, 275-288, (1999) · Zbl 1067.78501 [46] Lyalinov, M.A.; Zhu, N.Y., Exact solution to diffraction problem by wedges with a class of anisotropic impedance faces: oblique incidence of a plane electromagnetic wave, IEEE trans. antennas propagat., 51, 6, 1216-1220, (2003) [47] Avdeev, A.D., On a special function that enters in the problem of diffraction by a wedge in an anisotropic plasma, J. commun. technol. electron., 39, 10, 70-78, (1994) [48] Keller, J.B., Geometrical theory of diffraction, J. opt. soc. am., 52, 2, 116-130, (1962) [49] James, G.L., Geometrical theory of diffraction for electromagnetic waves, vol. 1 of IEE electromagnetic wave series, (1986), Peter Peregrinus Ltd. London [50] Pathak, P.H., Techniques for high – frequency problems, (), (Chapter 4) [51] Borovikov, V.A.; Kinber, B.Y., Geometrical theory of diffraction, vol. 37 of IEE electromagnetic wave series, (1994), The Institution of Electrical Engineers London [52] Ufimtsev, P.Y., Approximate computation of the diffraction of plane electromagnetic waves at certain metal bodies: 1. diffraction patterns at a wedge and a ribbon, Sov. phys.: tech. phys., 2, 1708-1718, (1957) [53] Ufimtsev, P.Y., Method of fringe waves in physical theory of diffraction, (1962), Sovetskoe Radio Moscow [54] Ufimtsev, P.Y., Theory of edge diffraction in electromagnetics, (2003), Tech Science Press Forsyth, GA, USA [55] Fock, V., The distribution of currents induced by a plane wave on the surface of a conductor, J. phys., 10, 2, 130-136, (1946) · Zbl 0063.01396 [56] Fock, V., The field of a plane wave near the surface of a conducting body, J. phys., 10, 5, 399-409, (1946) · Zbl 0063.01397 [57] Fock, V.A., New methods in diffraction theory, The London, Edinburgh, and Dublin philosophical magazine and journal of sciences, 39, ser. 7, 149-155, (1948) · Zbl 0030.18503 [58] Fock, V.A., Electromagnetic diffraction and propagation problems, vol. 1 of international series of monographs on electromagnetic waves, (1965), Pergamon Press Oxford [59] Atkinson, K.E., The numerical solution of integral equations of the second kind, vol. 4 of Cambridge monographs on applied and computational mathematics, (1997), Cambridge University Press Cambridge [60] Manzhirov, A.V.; Polyanin, A.D., Handbook of solution methods for integral equations, (1999), Faktorial Moscow · Zbl 0916.45001 [61] Nyström, E.J., Über die praktische auflösung von integralgleichungen mit anwendungen auf randwertaufgaben, Acta math., 54, 185-204, (1930) · JFM 56.0342.01 [62] Bernard, J.M.L., Diffraction at skew incidence by an anisotropic impedance wedge in electromagnetism theory: a new class of canonical cases, J. phys. A: math. gen., 31, 2, 595-613, (1998) · Zbl 0952.78009 [63] Malyuzhinets, G.D., Developments in our concepts of diffraction phenomena, Sov. phys.: usp., 69(2), 5, 749-758, (1959) [64] M.A. Lyalinov, N.Y. Zhu, Diffraction of a skew incident plane electromagnetic wave by a wedge with axially anisotropic impedance faces, presented at the 28th URSI General Assembly, Delhi/India, October 23-29, 2005.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.