Structure of noncommutative solitons: existence and spectral theory. (English) Zbl 1327.35328

Summary: We consider the Schrödinger equation with a Hamiltonian given by a second-order difference operator with nonconstant growing coefficients, on the half one-dimensional lattice. This operator appeared first naturally in the construction and dynamics of noncommutative solitons in the context of noncommutative field theory. We construct a ground state soliton for this equation and analyze its properties. In particular, we arrive at \(\ell^\infty\) and \(\ell^1\) estimates as well as a quasi-exponential spatial decay rate.


35Q40 PDEs in connection with quantum mechanics
35Q55 NLS equations (nonlinear Schrödinger equations)
39A05 General theory of difference equations
Full Text: DOI arXiv


[1] Abramowitz, M., Stegun, I.: Handbook of mathematical functions. http://people.math.sfu.ca/ cbm/aands/page_229.htm. 20 July 2010 · Zbl 0171.38503
[2] Baez, S.; Balachandran, A.P.; Vaidya, S.; Ydri, B., Monopoles and solitons in fuzzy physics, Commun. Math. Phys., 208, 787-798, (2000) · Zbl 0954.58026
[3] Bayen, F.; Flato, M.; Fronsdal, C.; Lichnerowicz, A.; Sternheimer, D., Deformation theory and quantization. I. deformations of symplectic structures, Ann. Phys., 111, 61-110, (1978) · Zbl 0377.53024
[4] Bayen, F.; Flato, M.; Fronsdal, C.; Lichnerowicz, A.; Sternheimer, D., Deformation theory and quantization. II. physical applications, Ann. Phys., 111, 111-151, (1978) · Zbl 0377.53025
[5] Buslaev, V.S.; Perelman, G.S., On the stability of solitary waves for nonlinear Schrödinger equations, Am. Math. Soc. Transl., 164, 75-98, (1995) · Zbl 0841.35108
[6] Buslaev, V.S.; Sulem, C., On asymptotic stability of solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Lineare, 20, 419-475, (2003) · Zbl 1028.35139
[7] Chen, T.; Fröhlich, J.; Walcher, J., The decay of unstable noncommutative solitons, Commun. Math. Phys., 237, 243-269, (2003) · Zbl 1037.81094
[8] Chen, Z., Segev, M., Christodoulides, D.N.: Optical spatial solitons: historical overview and recent advances. Rep. Prog. Phys. 75, 086401 (2012)
[9] Cuccagna, S.; Tarulli, M., On asymptotic stability of standing waves of discrete Schrödinger equation in \({\mathbb{Z}^*}\), SIAM J. Math. Anal., 41, 861-885, (2009) · Zbl 1189.35303
[10] Derrick, G.H.: Comments on nonlinear wave equations as models for elementary particles. J. Math. Phys. 5, 1252 (1964). doi:10.1063/1.1704233
[11] Durhuus, B., Gayral, V.: The scattering problem for a noncommutative nonlinear Schrödinger equation. SIGMA 6, 046 (2010) · Zbl 1219.35278
[12] Durhuus, B.; Jonsson, T.; Nest, R., Noncommutative scalar solitons: existence and nonexistence, Phys. Lett. B, 500, 320-325, (2001) · Zbl 0972.81192
[13] Durhuus, B.; Jonsson, T.; Nest, R., The existence and stability of noncommutative scalar solitons, Commun. Math. Phys., 233, 49-78, (2003) · Zbl 1029.81065
[14] Egorova, I., Kopylova, E., Teschl, G.: Dispersion estimates for one-dimensional discrete Schrödinger and wave equations. arXiv:1403.7803v1 · Zbl 1332.35313
[15] Eisenberg, H.S.; Silberberg, Y.; Morandotti, R.; Boyd, A.R.; Aitchison, J.S., Discrete spatial optical solitons in waveguide arrays, Phys. Rev. Lett., 81, 3383-3386, (1998)
[16] Gang, Z.; Sigal, I.M., Asymptotic stability of nonlinear Schrödinger equations with potential, Rev. Math. Phys., 17, 1143-1207, (2005) · Zbl 1086.82013
[17] Gopakumar, R., Minwalla, S., Strominger, A.: Noncommutative solitons. JHEP 0005, 020 (2000) · Zbl 0989.81612
[18] Jensen, A., Kato, T.: Spectral properties of Schrödinger operators and time-decay of the wave functions. Duke Math. J. 46(3), 583-611 (1979) · Zbl 0448.35080
[19] Kelley, W., Peterson, A.C.: Difference Equations, 2nd edn. Academic Press, San Diego (2001) · Zbl 0970.39001
[20] Kevrekidis, P.G., Pelinovsky, D.E., Stefanov, A.: Asymptotic stability of small solitons in the discrete nonlinear Schrödinger equation in one dimension. Mathematics and Statistics Department Faculty Publication Series. Paper 1143 (2008) · Zbl 1189.35303
[21] Komech, A.; Kopylova, E.; Kunze, M., Dispersive estimates for 1D discrete Schrödinger and Klein-Gordon equations, Appl. Anal., 85, 1487-1508, (2006) · Zbl 1121.39015
[22] Kopylova, E.A.; Komech, A.I., Long time decay for 2D Klein-Gordon equation, J. Funct. Anal., 259, 477-502, (2010) · Zbl 1192.35151
[23] Krueger, A.J., Soffer, A.: Dynamics of noncommutative solitons I: spectral theory and dispersive estimates (in review) · Zbl 1345.81067
[24] Krueger, A.J., Soffer, A.: Dynamics of noncommutative solitons II: spectral theory, dispersive estimates and stability (in review) · Zbl 1345.81067
[25] Lechtenfeld, O., Noncommutative solitons, AIP Conf. Proc., 977, 37-51, (2008) · Zbl 1183.83069
[26] Murata, M., Asymptotic expansions in time for solutions of Schrödinger-type equations, J. Funct. Anal., 49, 10-56, (1982) · Zbl 0499.35019
[27] Palmero, F.; Carretero-González, R.; Cuevas, J.; Kevrekidis, P.G.; Królikowski, W., Solitons in one-dimensional nonlinear Schrödinger lattices with a local inhomogeneity, Phys. Rev. E, 77, 036614, (2008)
[28] Soffer, A.; Weinstein, M.I., Multichannel nonlinear scattering for nonintegrable equations, Commun. Math. Phys., 133, 119-146, (1990) · Zbl 0721.35082
[29] Soffer, A.; Weinstein, M.I., Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math., 136, 9-74, (1999) · Zbl 0910.35107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.