Scattering for the \(L^2\) supercritical point NLS. (English) Zbl 1457.35064

In the paper [M. I. Molina and C. A. Bustamante, “The attractive nonlinear delta-function potential”, Am. J. Phys. 70, No. 1, 67 (2002; doi:10.1119/1.1417529], it is introduced a model for wave propagation in a 1D linear medium with a narrow strip of non-linear material. This model corresponds to the NLS equation \[\begin{cases} i\partial_t\psi+\partial_x^2\psi+K(x)|\psi|^{p-1}\psi=0&t,x\in\mathbb R\\ \psi(x,0)=\psi_0(x)\end{cases}\tag{\(\ast\)}\] Here \(K(x)=\delta_0\) is the Dirac delta function supported at \(0\) and the exponent \(p\) is assumed \(>1\).
The main result of the paper under review is the following. Assuming conditions on the initial data, \(\psi_0(x)\), related to the function \(\varphi_0(x):=2e^{\frac{1}{p-1}}e^{-|x|}\) (this is the ground state stationary solution of \((*)\)), there exist functions \(\psi^+,\psi^-\in H^1(\mathbb R)\) such that, if \(\psi(t,x)\) is a solution of \((*)\) and \(\psi(t,\cdot)\in H^1(\mathbb R)\), then \[\lim_{t\to\pm\infty}\| e^{-it\partial_x^2}\psi(t,\cdot)-\psi^\pm(\cdot)\|_{H^1(\mathbb R)}=0\,.\]


35Q55 NLS equations (nonlinear Schrödinger equations)
35B40 Asymptotic behavior of solutions to PDEs
35P25 Scattering theory for PDEs
78A60 Lasers, masers, optical bistability, nonlinear optics
Full Text: DOI arXiv


[1] ACCT R. Adami, R. Carlone, M. Correggi, and L. Tentarelli, Blow-up for the pointwise NLS in dimension two: absence of critical power, preprint arXiv:1808.10343 (2018). · Zbl 1436.35051
[2] Adami, Riccardo; Dell’Antonio, Gianfausto; Figari, Rodolfo; Teta, Alessandro, The Cauchy problem for the Schr\"{o}dinger equation in dimension three with concentrated nonlinearity, Ann. Inst. H. Poincar\'{e} Anal. Non Lin\'{e}aire, 20, 3, 477-500 (2003) · Zbl 1028.35137
[3] Adami, Riccardo; Teta, Alessandro, A class of nonlinear Schr\"{o}dinger equations with concentrated nonlinearity, J. Funct. Anal., 180, 1, 148-175 (2001) · Zbl 0979.35130
[4] Banica, Valeria; Visciglia, Nicola, Scattering for NLS with a delta potential, J. Differential Equations, 260, 5, 4410-4439 (2016) · Zbl 1342.35200
[5] Buslaev, V. S.; Komech, A. I.; Kopylova, E. A.; Stuart, D., On asymptotic stability of solitary waves in Schr\"{o}dinger equation coupled to nonlinear oscillator, Comm. Partial Differential Equations, 33, 4-6, 669-705 (2008) · Zbl 1185.35247
[6] Carlone, Raffaele; Correggi, Michele; Tentarelli, Lorenzo, Well-posedness of the two-dimensional nonlinear Schr\"{o}dinger equation with concentrated nonlinearity, Ann. Inst. H. Poincar\'{e} Anal. Non Lin\'{e}aire, 36, 1, 257-294 (2019) · Zbl 1410.35196
[7] Cacciapuoti, Claudio; Finco, Domenico; Noja, Diego; Teta, Alessandro, The NLS equation in dimension one with spatially concentrated nonlinearities: the pointlike limit, Lett. Math. Phys., 104, 12, 1557-1570 (2014) · Zbl 1303.81072
[8] Christ, F. M.; Weinstein, M. I., Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100, 1, 87-109 (1991) · Zbl 0743.35067
[9] Constantin, P.; Saut, J.-C., Local smoothing properties of dispersive equations, J. Amer. Math. Soc., 1, 2, 413-439 (1988) · Zbl 0667.35061
[10] Duyckaerts, Thomas; Holmer, Justin; Roudenko, Svetlana, Scattering for the non-radial 3D cubic nonlinear Schr\"{o}dinger equation, Math. Res. Lett., 15, 6, 1233-1250 (2008) · Zbl 1171.35472
[11] Fanelli, Luca; Visciglia, Nicola, The lack of compactness in the Sobolev-Strichartz inequalities, J. Math. Pures Appl. (9), 99, 3, 309-320 (2013) · Zbl 1266.35024
[12] Holmer, Justin; Roudenko, Svetlana, A sharp condition for scattering of the radial 3D cubic nonlinear Schr\"{o}dinger equation, Comm. Math. Phys., 282, 2, 435-467 (2008) · Zbl 1155.35094
[13] Holmer, Justin; Liu, Chang, Blow-up for the 1D nonlinear Schr\"{o}dinger equation with point nonlinearity I: Basic theory, J. Math. Anal. Appl., 483, 1, 123522, 20 pp. (2020) · Zbl 1436.35290
[14] HL2 J. Holmer and C. Liu, Blow-up for the 1D nonlinear Schr\"odinger equation with point nonlinearity II: Supercritical blowup profiles, arXiv:1708.03375 [math.AP]. · Zbl 1460.35328
[15] HTMG D. Hennig, G.P Tsironis, M.I. Molina, and H. Gabriel, A nonlinear quasiperiodic Kronig- Penney model, Physics Letters A 190 (1994)
[16] Komech, Alexander; Kopylova, Elena; Stuart, David, On asymptotic stability of solitons in a nonlinear Schr\"{o}dinger equation, Commun. Pure Appl. Anal., 11, 3, 1063-1079 (2012) · Zbl 1282.35352
[17] Kenig, Carlos E.; Merle, Frank, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schr\"{o}dinger equation in the radial case, Invent. Math., 166, 3, 645-675 (2006) · Zbl 1115.35125
[18] MB M. I. Molina and C. A. Bustamante, The attractive nonlinear delta-function potential, arXiv:physics/0102053 [physics.ed-ph] (2001).
[19] Nakanishi, Kenji, Energy scattering for nonlinear Klein-Gordon and Schr\"{o}dinger equations in spatial dimensions \(1\) and \(2\), J. Funct. Anal., 169, 1, 201-225 (1999) · Zbl 0942.35159
[20] Planchon, Fabrice; Vega, Luis, Bilinear virial identities and applications, Ann. Sci. \'{E}c. Norm. Sup\'{e}r. (4), 42, 2, 261-290 (2009) · Zbl 1192.35166
[21] Sj\"{o}lin, Per, Regularity of solutions to the Schr\"{o}dinger equation, Duke Math. J., 55, 3, 699-715 (1987) · Zbl 0631.42010
[22] Stein, Elias M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series 43, xiv+695 pp. (1993), Princeton University Press, Princeton, NJ · Zbl 0821.42001
[23] Vega, Luis, Schr\"{o}dinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc., 102, 4, 874-878 (1988) · Zbl 0654.42014
[24] Visciglia, Nicola, On the decay of solutions to a class of defocusing NLS, Math. Res. Lett., 16, 5, 919-926 (2009) · Zbl 1194.35431
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.