Giachetti, Riccardo; Grecchi, Vincenzo Localization of the states of a \(PT\)-symmetric double well. (English) Zbl 1329.81168 Int. J. Theor. Phys. 54, No. 11, 3889-3899 (2015). Summary: We make a nodal analysis of the processes of level crossings in a model of quantum mechanics with a \(PT\)-symmetric double well. We prove the existence of infinite crossings with their selection rules. At the crossing, before the PT-symmetry breaking and the localization, we have a total P-symmetry breaking of the states. Cited in 1 Document MSC: 81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics 81R05 Finite-dimensional groups and algebras motivated by physics and their representations Keywords:\(PT\)-symmetric; quantum mechanics; spectrum; level crossing; double well localization; Bander-Wu singularities PDF BibTeX XML Cite \textit{R. Giachetti} and \textit{V. Grecchi}, Int. J. Theor. Phys. 54, No. 11, 3889--3899 (2015; Zbl 1329.81168) Full Text: DOI arXiv OpenURL References: [1] Shin, KC, On the reality of eigenvalues for a class of PT-symmetric oscillators, Commun. Math. Phys., 104,229, 543-564, (2002) · Zbl 1017.34083 [2] Grecchi, V; Martinez, A, The spectrum of the cubic oscillator, Commun. Math. Phys., 319, 479-500, (2013) · Zbl 1268.81073 [3] Bender, CM; Wu, TT, Anharmonic oscllator, Phys. Rev., 184, 1231-60, (1969) [4] Simon, B, No article title, Ann. Phys., 58, 76, (1970) [5] Harrel, EMII; Simon, B, No article title, Duke Math. J. B, 47, 47, (1980) · Zbl 0439.20022 [6] Benassi, L; Grecchi, V, Resonances in the Stark effect and strongly asymptotic approxiamnts, J. Phys. B: At. Mol. Phys., 13, 911, (1980) [7] Shanley, PE, Spectral properties of the scaled quartic anharmonic oscillator, Ann. Phys. (N.Y.), 186, 292-324, (1988) · Zbl 0646.58038 [8] Shanley, PE, Nodal properties of the quartic anharmonic oscillator, Ann. Phys. (N.Y.), 186, 325-354, (1988) · Zbl 0646.58039 [9] Eremenko, A; Gabrielov, A, Analytic continuation of eigenvalues of a quartic oscillator, Comm. Math. Phys., 287, 431-457, (2009) · Zbl 1184.34083 [10] Eremenko, A; Gabrielov, A; Shapiro, B, Zeros of eigenfunctions of some anharmonic oscillators, Ann. Inst. Fourier, 58, 603-624, (2008) · Zbl 1155.34043 [11] Alvarez, G, Bender-Wu branch points in the cubic oscillator, J. Phys. A: Math. Gen, 27, 4589-4598, (1995) · Zbl 0867.34068 [12] Delabaere, E; Pham, F, Unfolding the quartic oscillator, Ann. Phys. NY, 261, 180-218, (1997) · Zbl 0977.34052 [13] Delabaere, E; Trinh, DT, Spectral analysis of the complex cubic oscillator, J. Phys. A: Math. Gen., 33, 8771-8796, (2000) · Zbl 1044.81555 [14] Delabaere, E; Dillinger, H; Pham, F, Exact semiclassical expansions for one-dimensional quantum oscillators, J. Math. Phys., 38, 6126-6184, (1997) · Zbl 0896.34051 [15] Zinn-Justin, J; Jentschura, UD, Imaginary cubic perturbation: numerical and analytic study, J. Phys. A: Math. Phys., 75, 425301, (2010) · Zbl 1201.81058 [16] Bouslaev, V; Grecchi, V, Equivalence of unstable anharmonic oscillators and double wells, J. Phys. A Math. Gen., 26, 5541-5549, (1993) · Zbl 0817.47077 [17] Bender, CM; Boettcher, S, Real spectra in non-Hermitian Hamiltonian having PT symmetry, Phys. Rev. Lett., 80, 5243, (1998) · Zbl 0947.81018 [18] Bender, CM; Boettcher, S; Savage, VM, Conjecture on interlacing of zeros in complex Sturm-Liouville problems, J. Math. Phys., 41, 6381-6387, (1999) · Zbl 0994.34071 [19] Caliceti, E, No article title, J. Phys. A, 33, 3753, (2000) · Zbl 1052.81518 [20] Loeffel, J; Martin, A; Simon, B; Wightman, A, No article title, Phys. Lett. B, 30, 656, (1969) [21] Sibuya, Y: Global theory of a second order linear ordinary differential equation with a polynomial coefficient, Chap. 7, Math. Studies 18. North Holland (1975) · Zbl 0322.34006 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.