×

Operator separation of variables for adiabatic problems in quantum and wave mechanics. (English) Zbl 1110.81080

Summary: Linear problems in mathematical physics where the adiabatic approximation is used in a wide sense are studied. From the idea that all these problems can be treated as problems with an operator-valued symbol, a general regular scheme of adiabatic approximation based on operator methods is proposed. This scheme is a generalization of the Born-Oppenheimer and Maslov methods, the Peierls substitution, etc. The approach proposed in this paper allows one to obtain “effective” reduced equations for a wide class of states inside terms (i.e., inside modes, subbands of dimensional quantization, etc.) with possible degeneration taken into account. Next, by application of asymptotic methods, in particular the semiclassical approximation method, to the reduced equation, the states corresponding to a distinguished term (effective Hamiltonian) can be classified. It is shown that the adiabatic effective Hamiltonian and the semiclassical Hamiltonian can be different, which results in the appearance of “nonstandard characteristics” while passing to classical mechanics. This approach is used to construct solutions of several problems in wave and quantum mechanics, particularly problems in molecular physics, solid-state physics, nanophysics and hydrodynamics.

MSC:

81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
82D20 Statistical mechanics of solids
53D12 Lagrangian submanifolds; Maslov index
70H11 Adiabatic invariants for problems in Hamiltonian and Lagrangian mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Born M., Oppenheimer J.R., (1927) Zur quantentheorie der molekeln. Annalen der Physik 84: 457–484 · JFM 53.0845.04 · doi:10.1002/andp.19273892002
[2] Peierls R.E.,(1955) Quantum Theory of Solids. Oxford, The Clarendon Press, viii + 229 pp. · Zbl 0068.23207
[3] Born M., Huang K.,(1954) Dynamical Theory of Crystall Lattices. Oxford, The Clarendon Press, xii + 420 pp. · Zbl 0057.44601
[4] L.D. Landau and E.M. Lifshitz, Quantum Mechanics (Nonrelativistic Theory). Theoretical Physics 3. Moscow: Nauka (1989) 768 pp. (in Russian) L.D. Landau and E.M. Lifshitz, Quantum Mechanics: (Nonrelativistic Theory). In: Theoretical Physics 3. Oxford, London, Edinburgh: Pergamon Press (1965) ix + 616 pp. · Zbl 0178.57901
[5] E.M. Lifshitz and L.P. Pitaevskii, Statistical Physics. Pt. 2. Theory of Condensed State. Theoretical Physics IX. Moscow: Nauka (1978) 448pp; E.M. Lifshitz and L.P. Pitaevskii, Statistical Physics. Pt. 2. Theory of Condensed State. In: L.D. Landau, E.M. Lifshitz and L.P. Pitaevskii (eds.), Course of Theoretical Physics 9. Oxford, London, Edinburgh: Pergamon Press (1980) x + 387 pp.
[6] V.P. Maslov, Perturbation Theory and Asymptotic Methods. Moscow: Moscow Univ. Publ. (1965) 549pp; V.P. Maslov, Théorie des perturbations et méthodes asymptotiques. Paris: Dunod, Gauthier-Villars (1972) xii + 384 pp.
[7] M.V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. London A392 (1984) · Zbl 1113.81306
[8] Percival I.C., (1977) Semiclassical theory of bound states. Adv. Chem. Phys. 36: 1–61 · doi:10.1002/9780470142554.ch1
[9] Hagedorn G.A., (1980) A time dependent Born–Oppenheimer approximation. Comm. Math. Phys. 77: 1–19 · Zbl 0448.70013 · doi:10.1007/BF01205036
[10] Yu.Z. Miropol’sky, The Dynamics of Internal Gravity Waves in Ocean. Leningrad: Gidrometeoizdat (1981) 302pp; Yu.Z. Miropol’sky, The Dynamics of Internal Gravity Waves in Ocean. In:Atmospheric and Oceanographic Sciences Library 24. Dordrecht etc.: Kluwer Academic Publishers (2001) xvii + 406 pp.
[11] S.Yu. Dobrokhotov, Maslov’s methods in linearized theory of gravitational waves on the liquid surface. Dokl. Akad. Nauk SSSR 269 (1983) 76–80; S.Yu. Dobrokhotov, Maslov’s methods in linearized theory of gravitational waves on the liquid surface. Sov. Phys. – Dokl. 28 (1983) 229–231. · Zbl 0533.76013
[12] Dobrokhotov S.Yu., (1984) Applications of Maslov’s theory to two problems for equations with operator-valued symbols. (in Russian) Usp. Mat. Nauk 39: 125
[13] L.V. Berlyand and S.Yu. Dobrokhotov, ”Operator separation of variables” in problems of short-wave asymptotics for differential equations with rapidly oscillating coefficients. Dokl. Akad. Nauk SSSR296 (1987) 80–84; L.V. Berlyand and S.Yu. Dobrokhotov, ”Operator separation of variables” in problems of short-wave asymptotics for differential equations with rapidly oscillating coefficients. Sov. Phys. – Dokl. 32 (1987) 714–716. · Zbl 0671.35013
[14] V.P. Maslov, Operational Methods. Moscow: Nauka (1973) 544 pp; V.P. Maslov, Operational Methods. Transl. from the Russian. Moscow: Mir Publishers (1973) 559 pp.
[15] V.P. Maslov, Nonstandard characteristics in asymptotic problems. Uspekhi Mat. Nauk 38 (1983) 3–36; V.P. Maslov, Nonstandard characteristics in asymptotical problems. In: Proceedings of the International Congress of Mathematicians (Warsaw, Aug. 16–24 1983) 1, 2. Warsaw: PWN (1984) pp. 139–183.
[16] L.I. Schiff, Quantum Mechanics. New York–Toronto–London: McGraw-Hill Book Co., Inc. (1955) xii + 417 pp.
[17] V.V. Belov, Semiclassical energy levels of a two-atom molecule in a magnetic field. Izv. vuzov. Matematika6 (1976) 13–18 (in Russian).
[18] Panatti G., Spohn H., Teufel S.,(2003) Effective dynamics for Bloch electrons: Peierls substitution and beyond. Comm. Math. Phys. 242: 547–578 · Zbl 1058.81020 · doi:10.1007/s00220-003-0950-1
[19] Dobrokhotov S.Yu., Zhevandrov P.N., (2003) Asymptotic expansions and the Maslov canonical operator in the linear theory of water waves I Main constructions and equations for surface gravity waves. Russ. J. Math. Phys. 10: 1–31 · Zbl 1065.76026
[20] S.Yu. Dobrokhotov, Many-Phase Asymptotic Solutions to Linear and Nonlinear Partial Differential Equations with a Small Parameter. Doctoral thesis. (in Russian). Moscow: IPMekh Akad. Nauk SSSR (1988) 293 pp.
[21] M.V. Karasev and V.P. Maslov, Asymptotic and geometric quantization. Usp. Mat. Nauk 39 (1984) 115–173; M.V. Karasev and V.P. Maslov, Asymptotic and geometric quantization. Russ. Math. Surveys 39 (1984) 133–205. · Zbl 0588.58031
[22] M.V. Karasev and V.P. Maslov, Nonlinear Poisson Brackets. Geometry and Quantization. Moscow: Nauka (1991) 366pp; M.V. Karasev and V.P. Maslov, Nonlinear Poisson Brackets. Geometry and Quantization. In: Transl. Math. Monographs 119. Providence, Rhode Island: AMS (1993) xi + 366 pp.
[23] Anosov D.V., (1960) Averaging in systems of ordinary differential equations with rapidly oscillating solutions. (in Russian) Izv. Akad. Nauk SSSR. Ser. Mat. 24: 721–742
[24] V.I. Arnold, V.V. Kozlov and A.I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics. In: V.I. Arnold (ed.), R.V. Gamkrelidze (ed.-in-chief), Progress in Science and Technology. Current Problems in Mathematics. Fundamental Directions 3 (Dynamical Systems III). Moscow: VINITI AN SSSR (1985) 304pp; V.I. Arnold, V.V. Kozlov and A.I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics. In: V.I. Arnold (ed.), R.V. Gamkrelidze (ed.-in-chief), Encyclopaedia of Mathematical Sciences 3 (Dynamical Systems III). Berlin etc.: Springer-Verlag (1988) xiv + 291 pp.
[25] P. Lochak and P. Meunier, Multiphase Averaging for Classical systems. In: S.S. Antmann, J.E. Marsden and L. Sirovich (eds.), Applied Mathematical Sciences72. Berlin etc.: Springer-Verlag (1988) xi + 360 pp. · Zbl 0668.34044
[26] A.I. Neishtadt, Averaging in multi-frequency systems. II. Dok. Akad. Nauk SSSR. Mekhanika 226 (1976) 1295–1298; A.I. eishtadt, Averaging in multi-frequency systems. II.Sov. Phys. – Dokl. 21 (1976) 80–82.
[27] Neishtadt A.I., (1984) The separation of motions in systems with rapidly rotating phase. J. Appl. Math. Mech. 48: 133–139 · Zbl 0571.70022 · doi:10.1016/0021-8928(84)90078-9
[28] Stefanski K., Taylor H.C., (1985) New approach to understanding quasiperiodicity in nonintegrable Hamiltonian systems. Phys. Rev. A 31: 2810–2820 · doi:10.1103/PhysRevA.31.2810
[29] Berry M.V., (1985) Classical adiabatic angles and quantal adiabatic phase. J. Phys. A: Math. Gen. 18: 15–27 · Zbl 0569.70020 · doi:10.1088/0305-4470/18/1/012
[30] de Witt B., (1957) Dynamical theory in curved spaces. I. Review of the classical and quantum action principles. Rev. Mod. Phys. 29: 377–397 · Zbl 0118.23301 · doi:10.1103/RevModPhys.29.377
[31] Jensen H., Koppe H., (1971) Quantum mechanics with constraints. Ann. Phys. 63: 586–591 · Zbl 1041.81500 · doi:10.1016/0003-4916(71)90031-5
[32] da Costa R.C.T., (1981) Quantum mechanics of constrained particle. Phys. Rev. A 23: 1982–1987 · doi:10.1103/PhysRevA.23.1982
[33] da Costa R.C.T., (1982) Constraints in quantum mechanics. Phys. Rev. A 25: 2893–2900 · doi:10.1103/PhysRevA.25.2893
[34] M.V. Entin and L.I. Magarill, Electrons in a twisted quantum wire. Phys. Rev. B 66 (2002) 205308 (5 pages).
[35] L.I. Magarill and M.V. Entin, Electrons in curvilinear quantum wire. Zh. Exper. Teor. Fiz. 123 (2003) 867–876; L.I. Magarill and M.V. Entin, Electrons in curvilinear quantum wire. J. Exper. Theor. Phys. 96 (2003) 766–774.
[36] Schuster P.C., Jaffe R.L., (2003) Quantum mechanics on manifolds embedded in Euclidean space. Ann. Phys. 307: 132–143 · Zbl 1037.81034 · doi:10.1016/S0003-4916(03)00080-0
[37] V.I. Arnold, Mathematical Methods of Classical Mechanics. Moscow: Nauka (1974) 432pp; V.I. Arnold, Mathematical Methods of Classical Mechanics. In: S. Axler, F.W. Gehring and K.A. Ribet (eds.), Graduate Texts in Mathematics 60. Berlin etc.: Springer-Verlag (1978) x + 462 pp.
[38] V.P. Maslov, The characteristics of pseudodifferential operators and difference schemes. In: Actes du Congrés Internationales des Mathématiciens (Nice, 1970) 2. Paris: Gauthier-Villars (1971) pp. 755–769.
[39] V.P. Maslov, Mathematical Aspects of Integral Optics. Moscow: MIEM (1983) 130pp; Journal version in: Russ. J. Math. Phys. 8 (2001) 83–105 and 180–238.
[40] N.S. Bakhvalov and G.P. Panasenko, Homogenization: Averaging Processes in Periodic Media. Mathematical Problems in the Mechanics of Composite Materials. Moscow: Nauka (1984) 352pp; N.S. Bakhvalov and G.P. Panasenko, Homogenization: Averaging Processes in Periodic Media. Mathematical Problems in the Mechanics of Composite Materials. In: Mathematics and Its Applications: Soviet Series 36. Dordrecht etc.: Kluwer Academic Publishers (1989) xxxv + 366 pp. · Zbl 0607.73009
[41] V.G. Vaks, Interatomic Interactions and Bonds in Solids. (in Russian). Moscow: IzdAT (2002) 256 pp.
[42] M.I. Katsnelson and A.V. Trefilov, Crystal Lattice Dynamics and Thermodynamics. (in Russian). Moscow: IzdAT (2002) 382 pp.
[43] V.S. Buslaev, Quasiclassical approximation for equations with periodic coefficients. Uspekhi Mat. Nauk42 (1987) 77–98; V.S. Buslaev, Quasiclassical approximation for equations with periodic coefficients. Russ. Math. Surveys42 (1987) 97–125. · Zbl 0698.35130
[44] Buslaev V.S., (1984) Adiabatic perturbation of a periodic potential. (in Russian). Teor. Mat. Fiz. 58: 223–243 · Zbl 0534.34064
[45] Fedotov A., Klopp F., (2002) Anderson transition for a family of almost periodic Schrödinger equations in the adiabatic case. Comm. Math. Phys. 227: 1–92 · Zbl 1004.81008 · doi:10.1007/s002200200612
[46] S.Yu. Dobrokhotov, Resonances in asymptotic of a solution of the Cauchy problem for the Schrödinger equation with a rapidly oscillating finite-zone potential. Mat. Zametki44 (1988) 319–340; S.Yu. Dobrokhotov, Resonances in asymptotic of a solution of the Cauchy problem for the Schrödinger equation with a rapidly oscillating finite-zone potential. Math. Notes44 (1988) 1015–1033. · Zbl 0667.35058
[47] Blount E.I., (1961) Bloch electrons in a magnetic field. Phys. Rev. 126(5): 1636–1653 · Zbl 0114.21901 · doi:10.1103/PhysRev.126.1636
[48] S.P. Novikov and A.Ya. Maltsev, Topological phenomena in normal metals. Usp. Fiz. Nauk 168 (1998) 249–258; S.P. Novikov and A.Ya. Maltsev, Topological Phenomena in Normal Metals. Phys. – Usp. 41 (1998) 231–239.
[49] Su W.P., Schrieffer I.R., Heeger A.J., (1980) Soliton excitations in polyacetylene. Phys. Rev. B 22: 2099–2111 · doi:10.1103/PhysRevB.22.2099
[50] Ziman J.M., (1964) Principles of the Theory of Solids. Cambridge, Cambridge University Press, xiii + 360 pp. · Zbl 0121.44801
[51] S.A. Brazovskii, I.E. Dzyaloshinskii and I.M. Krichever, Exactly soluble Peierls models. Zh. Exper. Teor. Fiz. 83 (1982) 389–404; S.A. Brazovskii, I.E. Dzyaloshinskii and I.M. Krichever, Exactly soluble Peierls models. Phys. Lett. A 83 (1982) 40–42.
[52] I.M. Krichever, Algebraic curves and non-linear difference equations. Usp. Mat. Nauk33 (1978) 215–216; I.M. Krichever, Algebraic curves and non-linear difference equations. Russ. Math. Surveys 33 (1978) 255–256. · Zbl 0412.39002
[53] S.Yu. Dobrokhotov and Yu.M. Vorob’ev, Semiclassical asymptotics for discrete models of electron-phonon interaction. Teor. Mat. Fiz. 57 (1983) 63–74; S.Yu. Dobrokhotov and Yu.M. Vorob’ev, Semiclassical asymptotics for discrete models of electron-phonon interaction. Theor. Math. Phys. 57 (1983) 993–1001.
[54] Badulin S.I., Shrira V.I., Tsimring L.Sh. (1985) The traping and vertical focusing of internal waves in a pycnocline due to the horisontal inhomogeneities of density and currents. J. Fluid Mech. 158: 199–218 · Zbl 0576.76025 · doi:10.1017/S0022112085002610
[55] Maslov V.P., (1958) Asymptotics of eigenfunctions of the equation {\(\Delta\)}u + k 2 u = 0 with boundary conditions on equidistant curves and the scattering of electromagnetic waves in a waveguide. (in Russian). Dokl. Akad. Nauk SSSR 123: 631–633
[56] Vorob’ev E.M., Maslov V.P., (1968) On the Single-mode open resonators. (in Russian). Dokl. Akad. Nauk SSSR 179: 558–561
[57] Exner P., (1995) A quantum pipette. J. Phys. A: Math. Gen. 28: 5323–5330 · Zbl 0868.81001 · doi:10.1088/0305-4470/28/18/021
[58] Lin K., Jaffe R.L., (1996) Bound states and threshold resonances in quantum wires with circular bends. Phys. Rev. B 54: 5750–5762 · doi:10.1103/PhysRevB.54.5750
[59] Dell’Antonio G.F., Tenuta L., (2004) Semiclassical analisys of constrained quantum systems. J. Phys. A: Math. Gen. 37: 5605–5624 · Zbl 1069.81021 · doi:10.1088/0305-4470/37/21/007
[60] A.G. Voronovich, The propagation of surface and internal gravitational waves in approximation of geometric optics. (in Russian). Izv. Akad. Nauk SSSR. Ser. Fizika Atmosfery i Okeana12 (1976) 850–857.
[61] S.Yu. Dobrokhotov, P.N. Zhevandrov, A.A. Korobkin and I.V. Sturova, Asymptotic theory of propagation of nonstationary surface and internal waves over uneven bottom. In: K.-H. Hoffmann and D. Mittelmann (eds.), International Series of Numerical Mathematics 106. Basel, Berlin etc.: Birkhäuser Verlag (1992) pp.105–112. · Zbl 0819.35113
[62] J. Brüning, S.Yu. Dobrokhotov, R.V. Nekrasov and T.Ya. Tudorovskiy, Quantum and classical dynamics of an electron in 2144 thin film. To appear in Russ. J. Math. Phys. · Zbl 1175.81117
[63] Iijima S., (1991) Helical microtubules of graphitic carbon. Nature 354: 56–58 · doi:10.1038/354056a0
[64] R. Saito, G. Dresselhaus and M.S. Dresselhaus, Physical Properties of Carbon Nanotubes. London: Imperial College Press (1998) xii + 259 pp. · Zbl 0752.68069
[65] Avouris Ph., Hertel T., Martel R., Schmidt T., Shea H.R., Walkup R.E., (1999) Carbon Nanotubes: nanomechanics, manipulation and electronic devices. Appl. Surf. Sci. 141: 201–209 · doi:10.1016/S0169-4332(98)00506-6
[66] L.A. Chernozatonskii, E.G. Gal’pern, N.R. Serebryanaya and I.V. Stankevich, Polymers of single-wall nanotubes: geometry, diffraction patterns, and electronic spectrum modeling. In: H. Kuzmany, J. Fink, M. Mehring and S. Roth. (eds.), AIP Conf. Proc. 486. Mellville, New York: American Institute of Physics (1999) pp. 284–305.
[67] Stankevich I.V., (1996) Diversity of carbon forms: hypothesis and reality. Mol. Mat. 7: 1–12
[68] Eletskii A.V., Carbon nanotubes. Usp. Fiz. Nauk 167 (1997) 945–972; A.V. Eletskii, Carbon nanotubes. Phys. – Usp. 40 (1997) 899–924.
[69] A.V. Eletskii, Carbon nanotubes and their emission properties. Usp. Fiz. Nauk 172 (2002) 401–438; A.V. Eletskii, Carbon nanotubes and their emission properties. Phys. – Usp. 45 (2002) 369–402.
[70] Prinz V.Ya., Grützmacher D., Beyer A., David C., Ketterer B., Deckardt E., (2001) A new technique for fabricating three-dimensional micro- and nanostructures of various shapes. Nanotechnology 12: 399–402 · doi:10.1088/0957-4484/12/4/301
[71] V. Gantmakher and Y. Levinson, Carrier Scattering in Metals and Semiconductors. Moscow: Nauka (1984) 350 pp; V. Gantmakher and Y. Levinson, Carrier Scattering in Metals and Semiconductors. In: V.M. Agranovich and A.A. Maradudin (eds.), Modern Problems in Condensed Matter Science 19. Amsterdam: North-Holland Publishing Co. (1987) xviii + 478 pp.
[72] V.V. Belov, S.Yu. Dobrokhotov and S.O. Sinitsyn, Asymptotic solutions of the Schrödinger equation in thin tubes. Trudy Instituta Matematiki i Mehaniki UrO RAN9 (2003) 1–11; V.V. Belov, S.Yu. Dobrokhotov and S.O. Sinitsyn, Asymptotic solutions of the Schrödinger equation in thin tubes. Proc. Steklov Inst. Math., suppl. 1 (2003) S13–S23. · Zbl 1126.35354
[73] V.V. Belov, S.Yu. Dobrokhotov, S.O. Sinitsyn and T.Ya. Tudorovskii, Quasiclassical approximation and the Maslov canonical operator for nonrelativistic equations of quantum mechanics in nanotubes. Dokl. Akad. Nauk. Ser. Mat. Fiz. 393 (2003) 460–464; V.V. Belov, S.Yu. Dobrokhotov, S.O. Sinitsyn and T.Ya. Tudorovskii, Quasiclassical approximation and the Maslov canonical operator for nonrelativistic equations of quantum mechanics in nanotubes. Dokl. Math. Ser. Math. Phys. 68 (2003) 460–465.
[74] Belov V.V., Dobrokhotov S.Yu., Tudorovskii T.Ya., (2004) Quantum and classical dynamics of an electron in thin curved tubes with spin and external electromagnetic fields taken into account. Russ. J. Math. Phys. 11: 109–119 · Zbl 1186.81061
[75] V.M. Babich and V.S. Buldyrev, Asymptotic Methods in Short Wave Diffraction Problems. Method of Etalon Problems. Moscow: Nauka (1972) 456pp; V.M. Babič and V.S. Buldyrev, Short-Wavelength Diffraction Theory: Asymptotic Methods. In: H.K.V. Lotsch (ed.-in-chief), L.M. Brekhovskikh, L.B. Felsen and H.A. Haus (eds.), Springer Series on Wave Phenomena 4. Berlin etc.: Springer-Verlag (1991), xi + 445 pp.
[76] P.K. Rashevskii, Riemannian Geometry and Tensor Analysis. Moscow: Nauka (1967) 664pp; P.K. Rashevskii, Riemann’sche Geometrie und Tensoranalysis. Berlin: Deutscher Verlag der Wissenschaften (1959) 606 pp.
[77] Kucherenko V.V., (1974) Asymptotics of solution of the system A(x,-ih)u = 0 as h 0 in the case of characteristics of variable multiplicity. (in Russian). Izv. Akad. Nauk SSSR. Ser. Mat. 38: 625–662
[78] Gordon A., Avron J.E., (2000) Born-Oppenheimer approximation near level crossing. Phys. Rev. Lett. 85: 34–37 · doi:10.1103/PhysRevLett.85.34
[79] Avron J.E., Gordon A., (2000) Born-Oppenheimer wave function near level crossing. Phys. Rev. A 62: 062504-1 – 062504-9 · doi:10.1103/PhysRevA.62.062504
[80] Verdier Y. Colin de, Parisse B., (1999) Singular Bohr-Sommerfeld rules. Comm. Math. Phys. 205: 459–500 · Zbl 1157.81310 · doi:10.1007/s002200050686
[81] Hertel T., Walkup R.E., Avouris P.,(1998) Deformation of carbon nanotubes by surface van der Waals forces. Phys. Rev. B 58: 13870–13873 · doi:10.1103/PhysRevB.58.13870
[82] A.S. Davydov, Quantum Mechanics. Moscow: Fizmatgiz (1963) 748pp; A.S. Davydov, Quantum Mechanics. In: International Series of Monographs in Natural Philosophy 1. Oxford, London, Edinburgh: Pergamon Press (1965) xiii + 680 pp.
[83] B.R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics. Moscow: Moskow University Publ. (1982) 293pp; B.R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics. New York etc.: Gordon and Breach Science Publishers (1989) vii + 498 pp.
[84] V.V. Belov, S.Yu. Dobrokhotov and T.Ya. Tudorovskiy, Asymptotic solutions of nonrelativistic equations of quantum mechanics in curved nanotubes. I. Reduction to spatially one-dimensional equations. Teor. Mat. Fiz. 141 (2004) 267–303; V.V. Belov, S.Yu. Dobrokhotov and T.Ya. Tudorovskiy, Asymptotic solutions of nonrelativistic equations of quantum mechanics in curved nanotubes. I. Reduction to spatially one-dimensional equations. Theor. Math. Phys. 141 (2004) 1562–1592. · Zbl 1178.81080
[85] T.Ya. Tudorovskiy, On the Effect of Spin on Classical and Quantum Dynamics of an Electron in Thin Twisted Tubes, Mathematical Notes, vol. 78, no. 6, 2005, pp. 883–889. Translated from Matematicheskie Zametki, vol. 78, no. 6, 2005, pp. 948–953. · Zbl 1108.81029
[86] A. Bensoussan, G.L. Lions and G.C. Papanicolaou, Asymptotic Analysis for Periodic structures. In: Studies in Mathematics and its Applications 5. Amsterdam: North-Holland Publishing Co. (1978) xxiv + 700 pp. · Zbl 0404.35001
[87] V.A. Marchenko and E.Ya. Khruslov, Boundary-Value Problems in Domains with Fine-Grained Boundary. (in Russian). Kiev: Naukova Dumka (1974) 279 pp. · Zbl 0289.35002
[88] Jikov V.V., Kozlov S.M., Oleinik O.A.,(1994) Homogenization of Differential Operators and Integral Functionals. Berlin etc, Springer-Verlag, xi + 570 pp.
[89] V.A. Geyler and I.Yu. Popov, Ballistic transport in nanostructures: explicitly solvable model. Teor. Mat. Fiz. 107 (1996) 12–20; V.A. Geiler and I.Yu. Popov, Ballistic transport in nanostructures: explicitly solvable model. Theor. Math. Phys. 107 (1996) 427–434.
[90] V.P. Maslov and M.V. Fedoryuk, Quasiclassical Approximation for the Equations of Quantum Mechanics. Moscow: Nauka (1976) 296pp; V.P. Maslov and M.V. Fedoriuk, Semi-Classical Approximation in Quantum Mechanics. In: Mathematical Physics and Applied Mathematics 7, Contemporary Mathematics 5. Dordrecht etc.: D. Reidel Publishing Co. (1981) ix + 301 pp.
[91] Brüning J., Dobrokhotov S.Yu., Pankrashkin K.V., The spectral asymptotics of the two-dimensional Schrödinger operator with a strong magnetic field. Russ. J. Math. Phys. 9 (2002) 14–49 and 400–416. · Zbl 1104.81046
[92] N.A. Poklonski, E.F. Kislyakov, G.G Fedoruk and S.A. Vyrko, Electronic structure model of a metal-filled carbon nanotube. Fiz. Tverd. Tela 42 (2000) 1911–1916; N.A. Poklonski, E.F. Kislyakov, G.G Fedoruk and S.A. Vyrko, Electronic structure model of a metal-filled carbon nanotube. Phys. Solid State 42 (2000) 1966–1971.
[93] Lemay S.G., Janssen J.W., van den Hout M., Mooij M., Bronikowski M.J., Willis P.A., Smalley R.E., Kouwenhoven L.P., Dekker C., (2001) Two-dimensional imaging of electronic wavefunctions in carbon nanotubes. Nature 412: 617–620 · doi:10.1038/35088013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.