×

Soliton-potential interactions for nonlinear Schrödinger equation in \(\mathbb{R}^3\). (English) Zbl 1428.35500


MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
35B40 Asymptotic behavior of solutions to PDEs
35C08 Soliton solutions
35P25 Scattering theory for PDEs
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] J. E. Avron, R. Seiler, and L. G. Yaffe, Adiabatic theorems and applications to the quantum hall effect, Comm. Math. Phys., 110 (1987), pp. 33–49. · Zbl 0626.58033
[2] W. K. Abou Salem and C. Sulem, Resonant tunneling of fast solitons through large potential barriers, Canad. J. Math., 63 (2011), pp. 1201–1219. · Zbl 1247.35152
[3] W. K. Abou Salem, Solitary wave dynamics in time-dependent potentials, J. Math. Phys., 49 (2008), 032101. · Zbl 1153.81428
[4] W. K. Abou Salem, J. Fröhlich, and I. Sigal, Colliding solitons for the non-linear Schrödinger equation, Comm. Math. Phys., 291 (2009), pp. 151–176.
[5] D. Bambusi and A. Maspero, Freezing of energy of a soliton in an external potential, Comm. Math. Phys., 344 (2016), pp. 155–191. · Zbl 1342.35320
[6] M. Beceanu, New estimates for a time-dependent Schrödinger equation, Duke Math. J., 159 (2011), pp. 417–477. · Zbl 1229.35224
[7] M. Beceanu and M. Goldberg, Schrödinger dispersive estimates for a scaling-critical class of potentials, Comm. Math. Phys., 314 (2012), pp. 471–481. · Zbl 1250.35047
[8] H. Berestycki and P. L .Lions, existence d’oudes solitaires daus les problemes nonlineares du type Klein-Gordon, C. R. Acad. Sci., 288 (1979), pp. 395–398.
[9] J. Bronski and R. Jerrard, Soliton dynamics in a potential, Math. Res. Lett., 7 (2000), pp. 329–342. · Zbl 0955.35067
[10] V. Buslaev and G. Perelman, Scattering for the nonlinear Schrödinger equation: States close to a soliton, St. Petersburg Math. J., 4 (1993), pp. 1111–1142.
[11] V. Buslaev and G. Perelman, Nonlinear scattering: The states which are close to a soliton, J. Math. Sci., 77 (1995), pp. 3161–3169.
[12] V. Buslaev and G. Perelman, On the stability of solitary waves for nonlinear Schrödinger equations, in Nonlinear Evolution Equations, Amer. Math. Soc. Tranl. Ser. 2 164, AMS, Providence, RI, 1995, pp. 75–98.
[13] V. Buslaev and C. Sulem, On the asymptotic stability of solitary waves of nonlinear Schrödinger equations, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 20 (2003), pp. 419–475. · Zbl 1028.35139
[14] K. Cai, Fine Properties of Charge Transfer Models, arXiv:math/0311048v1.
[15] T. Cazenave, Semilinear Schrödinger equations, Courant Lect. Notes Math. 10, AMS, Providence, RI, 2003.
[16] T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), pp. 549–561. · Zbl 0513.35007
[17] G. Chen, Strichartz estimates for charge transfer models, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017), pp. 1201–1226. · Zbl 1365.35150
[18] C. Coffman, Uniqueness of positive solutions of \(Δ u-u+u^{3}=0\) and a variational characterization of other solutions, Arch. Ration. Mech. Anal., 46 (1972), pp. 81–95. · Zbl 0249.35029
[19] A. Comech and D. Pelinovsky, Purely nonlinear instability of standing waves with minimal energy, Comm. Pure Appl. Math., 56 (2003), pp. 1565–1607. · Zbl 1072.35165
[20] C. Cote and S. Le Coz, High-speed excited multi-solitons in nonlinear Schrödinger equations, J. Math. Pures Appl., 96 (2011), pp. 135–166. · Zbl 1225.35215
[21] S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure Appl. Math., 54 (2001), pp. 1110–1145. · Zbl 1031.35129
[22] S. Cuccagna, On asymptotic stability of ground states of NLS, Rev. Math. Phys., 15 (2003), pp. 877–903. · Zbl 1084.35089
[23] S. Cuccagna, On asymptotic stability of moving ground states of the nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 366 (2014), pp. 2827–2888. · Zbl 1293.35289
[24] S. Cuccagna, On instability of exicited states of the nonlinear Schrödinger equation, Phys. D, 238 (2009), pp. 38–54.
[25] S. Cuccagna and M. Maeda, On weak interaction between a ground state and a non-trapping potential, J. Differential Equations, 256 (2014), pp. 1395–1466. · Zbl 1285.35107
[26] S. Cuccagna and M. Maeda, On small energy stabilization in the NLS with a trapping potential, Anal. PDE, 8 (2015), pp. 1289–1349. · Zbl 1326.35335
[27] S. Cuccagna and T. Mizumachi, On asymptotic stability in energy space of ground states for Nonlinear Schrödinger equations, Comm. Math. Phys., 284 (2008), pp. 51–77. · Zbl 1155.35092
[28] S. Cuccagna, D. Pelinovsky, and V. Vougalter, Spectra of positive and negative energies in the linearized NLS problem, Comm. Pure Appl. Math., 58 (2005), pp. 1–29. · Zbl 1064.35181
[29] S. Cuccagna and M. Tarulli, On asymptotic sability in energy space of ground states of NLS in 2D, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 26 (2009), pp. 1361–1386. · Zbl 1171.35470
[30] K. Datchev and J. Holmer, Fast soliton scattering by attractive delta impurities, Comm. Partial Differential Equations, 34 (2009), pp. 1074–1113. · Zbl 1194.35403
[31] Q. Deng, A. Soffer, and X. Yao, Endpoint Strichartz estimates for charge transfer Hamiltonians, Indiana Univ. Math. J., to appear.
[32] S. De Bièvre, F, Genoud, and S. Rota Nodari, Orbital stability: Analysis meets geometry, in Nonlinear Optical and Atomic Systems, Lecture Notes in Math. 2146, Springer, Cham, 2015, pp. 147–273. · Zbl 1347.37122
[33] J. Fröhlich, S. Gustafson, B. Jonsson, and I. Sigal, Solitary wave dynamics in an external potential, Comm. Math. Phys., 250 (2004), pp. 613–642.
[34] J. Fröhlich, S. Gustafson, B. Jonsson, and I. Sigal, Long time motion of NLS solitary waves in a confining potential, Ann. Henri Poincaré, 7 (2006), pp. 621–660.
[35] M. Goldberg, Dispersive bounds for the three-dimensional Schrödinger equation with almost critical potentials, Geom. Funct. Anal., 16 (2006), pp. 517–536. · Zbl 1158.35408
[36] R. Goodman, P. Holmes, and M. I. Weinstein, Strong NLS soliton-defect interactions, Phys. D, 192 (2004), pp. 215–248. · Zbl 1061.35132
[37] J. Graf, Phase Space Analysis of the Charge transfer Model, Helv. Phys. Acta, 63 (1990), pp. 107–138. · Zbl 0741.35050
[38] M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74 (1987), pp. 160–197. · Zbl 0656.35122
[39] M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence of symmetry. II, J. Funct. Anal., 94 (1990), pp. 308–348. · Zbl 0711.58013
[40] S. Gustafson, K. Nakanishi, and T. Tsai, Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves, Int. Math. Res. Not. IMRN, 66 (2004), pp. 3559–3584. · Zbl 1072.35167
[41] J. Holmer and M. Zworski, Slow soliton interaction with delta impurities, J. Mod. Dyn., 1 (2007), pp. 689–718. · Zbl 1137.35060
[42] J. Holmer and M. Zworski, Soliton interaction with slowly varying potentials, Int. Math. Res. Not. IMRN, 10 (2008), runn026. · Zbl 1147.35084
[43] J. Holmer, J. Marzuola, and M. Zworski, Soliton splitting by external delta potentials, J. Nonlinear Sci., 17 (2007), pp. 349–367. · Zbl 1128.35384
[44] J. Holmer, J. Marzuola, and M. Zworski, Fast soliton scattering by delta impurities, Comm. Math. Phys., 274 (2007), pp. 187–216. · Zbl 1126.35068
[45] J. Journé, A. Soffer, and C. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991), pp. 573–604.
[46] S. Le Coz and Y. Wu, Stability of multi-solitons for the derivative nonlinear Schrödinger equation, Int. Math. Res. Not., 2018 (2018), pp. 4120–4170.
[47] T. Kato, On the adiabatic theorem of quantum mechanics, J. Phys. Soc. Japan, 5 (1950), pp. 435–439.
[48] Y. Martel and F. Merle, Multi solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 23 (2006), pp. 849–864. · Zbl 1133.35093
[49] Y. Martel, F. Merle, and T. Tsai, Stability in \(H^{1}\) of the sum of K solitary waves for some nonlinear Schroödinger equations, Duke Math. J., 133 (2006), pp. 405–466. · Zbl 1099.35134
[50] C. Miao, X. Tang, and G. Xu, Stability of the traveling waves for the derivative Schrödinger equation in the energy space, Calc. Var. Partial Differential Equations, 56 (2017), 45.
[51] T. Mizumachi, Asymptotic stability of small solitons to 1D NLS with potential, J. Math. Tyoto Univ., 48 (2008), pp. 471–497. · Zbl 1175.35138
[52] T. Mizumachi, Asymptotic stability of small solitons for 2D nonlinear Schrödinger equations with potential, J. Math. Tyoto Univ., 47 (2007), pp. 599–620. · Zbl 1146.35085
[53] C. Munoz, On the soliton dynamics under slowly varying medium for Nonlinear Schrödinger equations, Math. Ann., 353 (2012), pp. 867–943. · Zbl 1291.35264
[54] K. Nakanishi, Global dynamics below excited solitons for the nonlinear Schrödinger equation with a potential, J. Math. Soc. Japan, 69 (2017), pp. 1353–1401. · Zbl 1383.35213
[55] G. Perelman, Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations, Comm. Partial Differential Equations, 29 (2004), pp. 1051–1095. · Zbl 1067.35113
[56] G. Perelman, A remark on soliton-potential interactions for nonlinear Schrödinger equations, Math. Res. Lett., 16 (2009), pp. 477–486. · Zbl 1172.81012
[57] G. Perelman, Two soliton collision for nonlinear Schrödinger equations in dimension 1, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 28 (2011), pp. 357–384. · Zbl 1217.35176
[58] G. Perelman, Some results on the scattering of weakly interacting solitons for nonlinear Schrödinger equations, in Spectral Theory, Microlocal Analysis, Singular Manifolds, Math. Top. 14, Akademie, Berlin, 1997, pp. 78–137. · Zbl 0931.35164
[59] I. Rodnianski, W. Schlag, and A. Soffer, Dispersive analysis of charge transfer models, Comm. Pure Appl. Math., 58 (2005), pp. 149–216. · Zbl 1130.81053
[60] I. Rodnianski, W. Schlag, and A. Soffer, Asymptotic Stability of N-Soliton States of NLS, arXiv:math/03091114v1. · Zbl 1130.81053
[61] W. Schlag, Stable manifolds for an orbitally unstable NLS, Ann. of Math., 169 (2009), pp. 139–227. · Zbl 1180.35490
[62] J. Shatah and W. Strauss, Instability of nonlinear bound states, Comm. Math. Phys., 100 (1985), pp. 173–190. · Zbl 0603.35007
[63] A. Soffer and M. Weinstein, Multichannel nonlinear scattering theory for nonintegrable equations, Comm. Math. Phys., 133 (1990), pp. 119–146. · Zbl 0721.35082
[64] A. Soffer and M .Weinstein, Multichannel nonlinear scattering theory for nonintegrable equations, II. The case of anisotropic potentials and data, J. Differential Equations, 98 (1992), pp. 376–390. · Zbl 0795.35073
[65] A. Soffer and M .Weinstein, Selection of the ground state for nonlinear Schrödinger equations, Rev. Math. Phys., 16 (2004), pp. 977–1071. · Zbl 1111.81313
[66] W. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), pp. 149–166. · Zbl 0356.35028
[67] T.-P. Tsai, Asymptotic dynamics of nonlinear Schrödinger equations with many bound states, J. Differential Equations, 192 (2003), pp. 225–282.
[68] T.-P. Tsai and H.-T. Yau, Asymptotic dynamics of nonlinear Schrödinger equations: Resonance-dominated and dispersion-dominated solutions, Comm. Pure Appl. Math., 55 (2002), pp. 153–216. · Zbl 1031.35137
[69] T.-P. Tsai and H.-T. Yau, Relaxation of excited states of nonlinear Schrödinger equations, Int. Math. Res. Not. IMRN, 31 (2002), pp. 1629–1673.
[70] T.-P. Tsai and H.-T. Yau, Stable directions for excited states of nonlinear Schrödinger equations, Comm. Partial Differential Equations, 27 (2002), pp. 2363–2402. · Zbl 1021.35113
[71] T.-P. Tsai and H.-T. Yau, Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data, Adv. Theor. Math. Phys., 6 (2002), pp. 107–139.
[72] M. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), pp. 472–491. · Zbl 0583.35028
[73] M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), pp. 51–67. · Zbl 0594.35005
[74] U. Wüller, Geometric methods in scattering theory of the charge transfer model, Duke Math J., 62 (1991), pp. 273–313. · Zbl 0732.35055
[75] K. Yajima, A multichannel scattering theory for some time dependent Hamiltonians, charge transfer problem, Comm. Math. Phys., 75 (1980), pp. 153–178. · Zbl 0437.47008
[76] L. Zielinski, Asymptotic completeness for multiparticle dispersive charge transfer models, J. Funct. Anal., 150 (1997), pp. 453–470. · Zbl 0891.35134
[77] G. Zhou and I. Sigal, Asymptotic stability of trapped solitons of nonlinear Schrödinger equations with potential, Rev. Math. Phys., 17 (2005), pp. 1143–1207. · Zbl 1086.82013
[78] G. Zhou and I. Sigal, On soliton dynamics in nonlinear Schrödinger equations, Geom. Funct. Anal., 16 (2006), pp. 1377–1390. · Zbl 1110.35084
[79] G. Zhou and I. Sigal, Relaxation of solitons in Nonlinear Schrödinger equations with potential, Adv. Math., 216 (2007), pp. 443–490. · Zbl 1126.35065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.