×

Lower bounds on the width of Stark-Wannier type resonances. (English) Zbl 0851.34078

Summary: We prove that the Schrödinger operator \(- d^2/dx^2+ Fx+ W(x)\) on \(L^2(\mathbb{R})\) with \(W\) bounded and analytic in a strip has no resonances in a region \(\text{Im } E\geq -\exp(- C/F)\).

MSC:

34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Agler, J. and Froese, R.: Existence of Stark ladder resonances.Commun. Math. Phys. 100, 161–171 (1985) · Zbl 0651.47006
[2] Ahia, F.: Lower bounds on width of Stark resonances in one dimension.Lett. Math. Phys. 24, 21–29 (1992) · Zbl 0782.34086
[3] Avron, J.E.: The lifetime of Wannier ladder states.Ann. Phys. 143, 33–53 (1982)
[4] Bentosela, F., Carmona, R., Duclos, P., Simon, B., and Souillard, B.: Schrödinger operators with an electric field and random or deterministic potentials.Commun. Math. Phys. 88, 387–397 (1983) · Zbl 0531.60061
[5] Bentosela, F. and Grecchi, V.: Stark Wannier ladders.Commun. Math. Phys. 142, 169–192 (1991) · Zbl 0743.35053
[6] Briet, P.: Estimates on distorted resolvents and application to Stark hamiltonians.Rev. Math. Phys. to appear (1996) · Zbl 0855.47035
[7] Briet, P., Combes, J.M., and Duclos, P.: On the location of resonances for Schrödinger operators in the semi classical limit 1: Free domains of resonances.J. Math. Anal. Appl. 126, 90–99 (1987) · Zbl 0629.47043
[8] Briet, P., Combes, J.M., and Duclos, P.: Spectral stability under tunneling.Commun. Math. Phys. 126, 133–156 (1989) · Zbl 0702.35189
[9] Buslaev, V.S. and Dmitrieva, L.A.: A Bloch electron in an external field.Leningrad Math. J. 1(2), 287–320 (1990) · Zbl 0726.34070
[10] Combes, J.M., and Hislop, P.: Stark ladder resonances for small electric fields.Commun. Math. Phys. 140, 291–320 (1991) · Zbl 0737.34060
[11] Fernandez, C., and Lavine, R.: Lower bounds for resonance widths in potential and obstacle scattering.Commun. Math. Phys. 128(2), 263–284 (1990) · Zbl 0712.35072
[12] Gelfand, I.M., and Zakharevich, I.: The spectral theory for a pencil of skewsymmetrical operators of the third order.Comm. Pure. Appl. Math. 157, 1031–1041 (1994) · Zbl 0815.47009
[13] Grecchi, V., Maioli, M., and Sacchetti, A.: Stark resonances in disordered systems.Commun. Math. Phys. 146, 231–240 (1992) · Zbl 0770.47030
[14] Grecchi, V., Maioli, M., and Sacchetti, A.: Stark ladders of resonances: Wannier ladders and perturbation theory.Commun. Math. Phys. 159, 605–618 (1994) · Zbl 0808.35114
[15] Grecchi, V., and Sacchetti, A.: Crossing and anticrossing of resonances: The Wannier-Stark ladders.Ann. Phys. 241, 258–284 (1995)
[16] Harrel II, E.M.: General lower bounds for resonances in one dimension.Commun. Math. Phys. 86, 221–225 (1982) · Zbl 0507.34024
[17] Helffer, B., and Sjöstrand, J.: Résonances en limite semi-classique.Bull. Soc. Math. France 114(3), No. 24/25 (1986) · Zbl 0631.35075
[18] Herbst, I.W., and Howland, J.S.: The Stark ladder and other one-dimensional external field problems.Commun. Math. Phys. 80, 23–42 (1981) · Zbl 0473.47037
[19] Hunziker, W.: Distortion analyticity and molecular resonance curves.Ann. Inst. Henri Poincaré 43(4), 339–358 (1986) · Zbl 0619.46068
[20] Jensen, A.: Bounds on resonances for Stark-Wannier and related hamiltonians.J. Oper. Theory 19(1), 69–80 (1988) · Zbl 0676.47028
[21] Kato, T.:Perturbation Theory for Linear Operators. Berlin-Heidelberg-New York: Springer (1980) · Zbl 0435.47001
[22] McKean, H.P., and Trubowitz, E.: Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points.Comm. Pure. Appl. Math. 29(1), 143–226 (1976) · Zbl 0339.34024
[23] Olver, F.W.J.:Asymptotics and Special Functions. London-New York: Academic Press (1974) · Zbl 0303.41035
[24] Reed, M., and Simon, B.:Methods of Modern Mathematical Physics II. London-New York: Academic (1975) · Zbl 0308.47002
[25] Wannier, G.H.: Wave functions and effective hamiltonians for Bloch electrons in an electric field.Phys. Rev. 117, 432–439 (1960) · Zbl 0091.23502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.