×

Spectral shift function, amazing and multifaceted. (English) Zbl 0907.47014

Summary: Several formula representations for the I. M. Lifshits-M. G. Kreĭn spectral shift function (SSF) are discussed and intercompared. It is pointed out that the equivalence of these representations is not apparent, and different properties of the SSF are revealed by different formulas. The presentation is informal and contains no proofs.

MSC:

47B25 Linear symmetric and selfadjoint operators (unbounded)
47A55 Perturbation theory of linear operators
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] I. M. Lifshits,On a problem in perturbation theory, Uspekhi Mat. Nauk7(1952), no. 1 (47), 171-180. (Russian) · Zbl 0046.21203
[2] M. G. Kreîn,On the trace formula in perturbation theory, Mat. Sb.33 (75) (1953), 597-626. (Russian) · Zbl 0052.12303
[3] M. G. Kreîn,On perturbation determinants and the trace formula for unitary and selfadjoint operators, Dokl. Akad. Nauk SSSR144 (1962), 268-271; English transl. in Soviet Math. Dokl.3 (1962).
[4] M. G. Kreîn,Some new studies in the theory of perturbations of selfadjoint operators, First Math. Summer School (Kanev, 1963), Part I, ?Naukova Dumka?, Kiev, 1964, pp. 103-187; English transl. in M. G. Kreîn,Topics in differential and integral equations and operator theory, Birkhäuser, Basel, 1983, pp. 107-172.
[5] M. G. Kreîn,On perturbation determinants and trace formula for certain classes of pairs of operators, J. Operator Theory17 (1987), 129-187; English transl. in Amer. Math. Soc. Transl. (2)145 (1989).
[6] M. Sh. Birman and M. G. Kreîn,On the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR144 (1962), 475-478; English transl. in Soviet Math. Dokl.3 (1962).
[7] M. Sh. Birman and M. G. Kreîn,Some topics of the theory of the wave operators and scattering operators, Outlines Joint Sympos. Partial Differential Equations (Novosibirsk, 1963), Acad. Sci. USSR Siberian Branch, Moscow, 1963, pp. 39-45. (English)
[8] M. G. Kreîn and V. A. Yavryan,On spectral shift functions arising in perturbations of a positive operator, J. Operator Theory6 (1981), 155-191. (Russian) · Zbl 0505.47016
[9] M. Sh. Birman and D. R. Yafaev,The spectral shift function. The work of M. G. Kreîn and its further development, Algebra i Analiz4 (1992), no.5, 1-44; English transl. in St. Petersburg Math. J.4 (1993), no.5. · Zbl 0791.47013
[10] D. R. Yafaev,Mathematical scattering theory. General theory, Amer. Math. Soc., Providence, RI, 1992. · Zbl 0761.47001
[11] M. Sh. Birman and S. B. Entina,The stationary approach in abstract scattering theory, Izv. Akad. Nauk SSSR Ser. Mat.31 (1967), 401-430; English transl. in Math. USSR Izv.1 (1967). · Zbl 0116.32502
[12] S. N. Naboko,Non-tangent boundary values of operator R-functions in the half-plane, Algebra i Analiz,1 (1989), no.5, 197-222; English transl. in Leningrad Math. J.,1 (1990), no.5.
[13] A. V. Sobolev,Efficient bounds for the spectral shift function, Ann. Inst. H.Poincare, Physique theorique,58, no.1 (1993), 55-83. · Zbl 0813.47006
[14] B. Simon,Spectral averaging and the Kreîn spectral shift, submitted to Proc. Amer. Math. Soc.
[15] M. Sh. Birman, M. Z. Solomyak,Remarks on the spectral shift function, Zap. Nauch. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)27 (1972), 33-46; English transl. in J. Soviet Math.3 (1975), no.4. · Zbl 0329.47009
[16] I. M. Lifshits,On the problem of scattering of particles by a centrally symmetric field in quantum mechanics, Khar’kov. Gos. Univ. Uchen. Zap.27 (1948), 105-107. (Russian)
[17] V. S. Buslaev, L. D. Faddeev,On trace formulas for a singular differential Sturm-Liouville operator, Dokl. Akad. Nauk SSSR132 (1960), 13-16; English transl. in Soviet Math. Dokl.1 (1960). · Zbl 0129.06501
[18] V. S. Buslaev,Trace formulas for the Schrödinger operator in three-dimensional space, Dokl. Akad. Nauk SSSR142 (1962), 1067-1070; English transl. in Soviet Math. Dokl.3 (1962). · Zbl 0118.09302
[19] A. B. Pushnitski,Representation for the spectral shift function for perturbations of a definite sign, Algebra i Analiz (St.-Petersburg Mathematical Journal), to appear. · Zbl 0954.47036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.