×

Polynomial chaos expansions for dependent random variables. (English) Zbl 1441.65014

Summary: Polynomial chaos expansions (PCE) are well-suited to quantifying uncertainty in models parameterized by independent random variables. The assumption of independence leads to simple strategies for building multivariate orthonormal bases and for sampling strategies to evaluate PCE coefficients. In contrast, the application of PCE to models of dependent variables is much more challenging. Three approaches can be used to construct PCE of models of dependent variables. The first approach uses mapping methods where measure transformations, such as the Nataf and Rosenblatt transformation, can be used to map dependent random variables to independent ones; however we show that this can significantly degrade performance since the Jacobian of the map must be approximated. A second strategy is the class of dominating support methods. In these approaches a PCE is built using independent random variables whose distributional support dominates the support of the true dependent joint density; we provide evidence that this approach appears to produce approximations with suboptimal accuracy. A third approach, the novel method proposed here, uses Gram-Schmidt orthogonalization (GSO) to numerically compute orthonormal polynomials for the dependent random variables. This approach has been used successfully when solving differential equations using the intrusive stochastic Galerkin method, and in this paper we use GSO to build PCE using a non-intrusive stochastic collocation method. The stochastic collocation method treats the model as a black box and builds approximations of the input-output map from a set of samples. Building PCE from samples can introduce ill-conditioning which does not plague stochastic Galerkin methods. To mitigate this ill-conditioning we generate weighted Leja sequences, which are nested sample sets, to build accurate polynomial interpolants. We show that our proposed approach, GSO with weighted Leja sequences, produces PCE which are orders of magnitude more accurate than PCE constructed using mapping or dominating support methods.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60-08 Computational methods for problems pertaining to probability theory
60G07 General theory of stochastic processes
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ghanem, R. G.; Spanos, P. D., Stochastic Finite Elements: A Spectral Approach (1991), Springer-Verlag New York, Inc. · Zbl 0722.73080
[2] Xiu, D.; Karniadakis, G. E., The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 2, 619-644 (2002) · Zbl 1014.65004
[3] Xiu, D.; Hesthaven, J. S., High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27, 3, 1118-1139 (2005) · Zbl 1091.65006
[4] Nobile, F.; Tempone, R.; Webster, C. G., A sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal., 46, 5, 2309-2345 (2008) · Zbl 1176.65137
[5] Rasmussen, Carl Edward; Williams, Christopher K. I., Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) (2005), The MIT Press · Zbl 1177.68165
[6] Oseledets, I. V., Tensor-train decomposition, SIAM J. Sci. Comput., 33, 5, 2295-2317 (2011) · Zbl 1232.15018
[7] Babuska, I. M.; Nobile, F.; Tempone, R., A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45, 3, 1005-1034 (2007) · Zbl 1151.65008
[8] Conrad, Patrick R.; Marzouk, Youssef M., Adaptive Smolyak pseudospectral approximations, SIAM J Sci. Comput., 35, 6 (2013) · Zbl 1294.41004
[9] Constantine, P. G.; Eldred, M. S.; Phipps, E. T., Sparse pseudospectral approximation method, Comput. Methods Appl. Mech. Engrg., 229-232, 1-12 (2012) · Zbl 1253.65117
[10] Barthelmann, V.; Novak, E.; Ritter, K., High dimensional polynomial interpolation on sparse grids, Adv. Comput. Math., 12, 4, 273-288 (2000) · Zbl 0944.41001
[11] Gregery T. Buzzard, Global sensitivity analysis using sparse grid interpolation and polynomial chaos, Reliab. Eng. Syst. Saf., 107, 82-89 (2012)
[12] Narayan, A.; Xiu, D., Stochastic collocation methods on unstructured grids in high dimensions via interpolation, SIAM J. Sci. Comput., 34, 3, A1729-A1752 (2012) · Zbl 1246.65029
[13] Migliorati, G.; Nobile, F.; von Schwerin, E.; Tempone, R., Approximation of quantities of interest in stochastic PDEs by the random discrete \(L^2\) projection on polynomial spaces, SIAM J. Sci. Comput., 35, 3, A1440-A1460 (2013) · Zbl 1276.65004
[14] Tang, T.; Zhou, T., On discrete least-squares projection in unbounded domain with random evaluations and its application to parametric uncertainty quantification, SIAM J. Sci. Comput., A2272-A2295 (2014) · Zbl 1305.41008
[15] Doostan, A.; Owhadi, H., A non-adapted sparse approximation of PDEs with stochastic inputs, J. Comput. Phys., 230, 8, 3015-3034 (2011) · Zbl 1218.65008
[16] Yan, L.; Guo, L.; Xiu, D., Stochastic collocation algorithms using \(\ell_1\)-minimization, Int. J. Uncertain. Quantif., 2, 3, 279-293 (2012) · Zbl 1291.65024
[17] Jakeman, J. D.; Eldred, M. S.; Sargsyan, K., Enhancing \(\ell_1\)-minimization estimates of polynomial chaos expansions using basis selection, J. Comput. Phys., 289, 0, 18-34 (2015) · Zbl 1352.65026
[18] Chevreuil, M.; Lebrun, R.; Nouy, A.; Rai, P., A least-squares method for sparse low rank approximation of multivariate functions, SIAM/ASA J. Uncertain. Quantif., 3, 1, 897-921 (2015) · Zbl 1327.65029
[19] Doostan, A.; Validi, A.; Iaccarino, G., Non-intrusive low-rank separated approximation of high-dimensional stochastic models, Comput. Methods Appl. Mech. Engrg., 263, 42-55 (2013) · Zbl 1286.65014
[20] Gorodetsky, A. A.; Jakeman, J. D., Gradient-based optimization for regression in the functional tensor-train format, J. Comput. Phys., 374, 1219-1238 (2018) · Zbl 1416.62391
[21] Narayan, A.; Jakeman, J. D., Adaptive Leja sparse grid constructions for stochastic collocation and high-dimensional approximation, SIAM J. Sci. Comput., 36, 6, A2952-A2983 (2014) · Zbl 1316.65018
[22] Li, Heng.; Zhang, Dongxiao., Probabilistic collocation method for flow in porous media: comparisons with other stochastic methods, Water Resour. Res., 43, 9 (2007)
[23] Seshadri, Pranay; Narayan, Akil; Mahadevan, Sankaran, Effectively subsampled quadratures for least squares polynomial approximations, SIAM/ASA J. Uncertain. Quantif., 5, 1, 1003-1023 (2017) · Zbl 1384.93159
[24] Tang, Gary; Iaccarino, Gianluca, Subsampled gauss quadrature nodes for estimating polynomial chaos expansions, SIAM/ASA J. Uncertain. Quantif., 2, 1, 423-443 (2014) · Zbl 1308.41005
[25] Narayan, Akil; Jakeman, John D.; Zhou, Tao, A christoffel function weighted least squares algorithm for collocation approximations, Math. Comp., 86, 1913-1947 (2017) · Zbl 1361.65009
[26] Rauhut, Holger; Ward, Rachel, Sparse Legendre expansions via \(\ell_1\)-minimization, J. Approx. Theory, 164, 5, 517-533 (2012) · Zbl 1239.65018
[27] Hampton, Jerrad; Doostan, Alireza, Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies, J. Comput. Phys., 280, 363-386 (2015) · Zbl 1349.94110
[28] Jakeman, J. D.; Narayan, A.; Zhou, T., A generalized sampling and preconditioning scheme for sparse approximation of polynomial chaos expansions, SIAM J. Sci. Comput., 39, 3, A1114-A1144 (2017) · Zbl 1368.65025
[29] J. Jakeman, A. Narayan, 2019. Multivariate weighted Leja sequences using least orthogonal interpolation, Submitted.; J. Jakeman, A. Narayan, 2019. Multivariate weighted Leja sequences using least orthogonal interpolation, Submitted.
[30] Arnst, M.; Ghanem, R.; Phipps, E.; Red-Horse, J., Measure transformation and efficient quadrature in reduced-dimensional stochastic modeling of coupled problems, Internat. J. Numer. Methods Engrg., 92, 12, 1044-1080 (2012) · Zbl 1352.65015
[31] Constantine, P. G.; Phipps, E. T.; Wildey, T. M., Efficient uncertainty propagation for network multiphysics systems, Internat. J. Numer. Methods Engrg., 99, 3, 183-202 (2014) · Zbl 1352.65339
[32] Keshavarzzadeh, V.; Kirby, R.; Narayan, A., Numerical integration in multiple dimensions with designed quadrature, SIAM J. Sci. Comput., 40, 4, A2033-A2061 (2018) · Zbl 1471.65020
[33] Cui, C.; Zhang, Z., Stochastic collocation with non-gaussian correlated process variations: theory, algorithms and applications, IEEE Trans. Compon. Packag. Manuf. Technol. (2018), 1-1, https://doi.org/10.1109/TCPMT.2018.2889266
[34] Jakeman, J. D.; Eldred, M.; Xiu, D., Numerical approach for quantification of epistemic uncertainty, J. Comput. Phys., 229, 12, 4648-4663 (2010) · Zbl 1204.65008
[35] Chen, Xiaoxiao; Park, Eun-Jae; Xiu, Dongbin, A flexible numerical approach for quantification of epistemic uncertainty, J. Comput. Phys., 240, 211-224 (2013) · Zbl 1305.65013
[36] Witteveen, J. A.S.; Bijl, H., Modeling arbitrary uncertainties using Gram-Schmidt, (Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Number AIAA-2006-0896 (2006))
[37] Gerritsma, Marc; Steen, Jan-Bart van der; Vos, Peter; Karniadakis, George, Time-dependent generalized polynomial chaos, J. Comput. Phys., 229, 22, 8333-8363 (2010) · Zbl 1201.65216
[38] Ernst, Oliver G.; Mugler, Antje; Starkloff, Hans-Jörg; Ullmann, Elisabeth, On the convergence of generalized polynomial chaos expansions, ESAIM Math. Model. Numer. Anal., 46, 02, 317-339 (2012) · Zbl 1273.65012
[39] Eldred, Michael; Burkardt, John, Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification, (47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, pages 1-20 (2009), American Institute of Aeronautics and Astronautics: American Institute of Aeronautics and Astronautics Orlando)
[40] Torre, Emiliano; Marelli, Stefano; Embrechts, Paul; Sudret, Bruno, A general framework for data-driven uncertainty quantification under complex input dependencies using vine copulas, Probab. Eng. Mech., 55, 1-16 (2019)
[41] Rosenblatt, Murray, Remarks on a multivariate transformation, Ann. Math. Stat., 23, 1952, 470-472 (1952) · Zbl 0047.13104
[42] Franzelin, F., Data-Driven Uncertainty Quantification for Large-Scale Simulations (2018), University of Stuttgart, Stuttgart: University of Stuttgart, Stuttgart Germany, (Ph.D thesis)
[43] Liu, Pei-Ling; Kiureghian, Armen Der, Multivariate distribution models with prescribed marginals and covariances, Probab. Eng. Mech., 1, 2, 105-112 (1986)
[44] Li, HongShuang; Lü, ZhenZhou; Yuan, XiuKai, Nataf transformation based point estimate method, Chinese Sci. Bull., 53, 17, 2586-2592 (2008)
[45] Gautschi, Walter, Orthogonal polynomials: applications and computation, Acta Numer., 5, 45-119 (1996), 001 · Zbl 0871.65011
[46] Jakeman, J. D.; Narayan, A., Generation and application of multivariate polynomial quadrature rules, Comput. Methods Appl. Mech. Engrg. (2018), in press · Zbl 1440.65036
[47] Fedorov, Valeri Vadimovich, Theory of optimal experiments (1972), Academic Press
[48] Leja, F., Sur certaines suites liées aux ensembles plans et leur application à la représentation conforme, Ann. Polon. Math., 4, 1 (1957) · Zbl 0089.08303
[49] Reichel, Lothar, Newton interpolation at Leja points, BIT, 30, 2, 332-346 (1990) · Zbl 0702.65012
[50] Baglama, J.; Calvetti, D.; Reichel, L., Fast Leja points, Electron. Trans. Numer. Anal., 7, 124-140 (1998) · Zbl 0912.65004
[51] Sommariva, Alvise; Vianello, Marco, Computing approximate Fekete points by Qr factorizations of Vandermonde matrices, Comput. Math. Appl., 57, 8, 1324-1336 (2009) · Zbl 1186.65028
[52] Bos, L.; De Marchi, S.; Sommariva, A.; Vianello, M., Computing multivariate fekete and leja points by numerical linear algebra, SIAM J. Numer. Anal., 48, 5, 1984 (2010) · Zbl 1221.41005
[53] Bos, L.; Calvi, J.-P.; Levenberg, N.; Sommariva, A.; Vianello, M., Geometric weakly admissible meshes, discrete least squares approximations and approximate, Fekete Points. Math. Comp., 80, 275, 1623-1638 (2011) · Zbl 1228.41002
[54] Cohen, Albert; Migliorati, Giovanni, Optimal weighted least-squares methods, SMAI J. Comput. Math., 3, 181-203 (2017) · Zbl 1416.62177
[55] Burns, D.; Levenberg, N.; Mau, S.; Rvsz, Sz, Monge-Ampère measures for convex bodies and Bernstein-Markov type inequalities, Trans. Amer. Math. Soc., 362, 12, 6325-6340 (2010) · Zbl 1213.32018
[56] Guo, L.; Narayan, A.; Yan, L.; Zhou, T., Weighted approximate fekete points: sampling for least-squares polynomial approximation, SIAM J. Scientific Comput., 40, 1, A366-A387 (2018) · Zbl 1382.41005
[57] Stuart, A. M., Inverse problems: A Bayesian perspective, Acta Numer., 19, 451-559 (2010), 5 · Zbl 1242.65142
[58] Oladyshkin, S.; Nowak, W., Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion, Reliab. Eng. Syst. Saf., 106, 0, 179-190 (2012)
[59] Dennis Vigil, R.; Willmore, Frank T., Oscillatory dynamics in a heterogeneous surface reaction: Breakdown of the mean-field approximation, Phys. Rev. E, 54, 1225-1231 (1996)
[60] Conrad, Patrick R.; Marzouk, Youssef M.; Pillai, Natesh S.; Smith, Aaron, Accelerating asymptotically exact mcmc for computationally intensive models via local approximations, J. Amer. Statist. Assoc., 111, 516, 1591-1607 (2016)
[61] Li, J.; Marzouk, Y., Adaptive construction of surrogates for the bayesian solution of inverse problems, SIAM J. Sci. Comput., 36, 3, A1163-A1186 (2014) · Zbl 1415.65009
[62] Mattis, Steven A.; Wohlmuth, Barbara, Goal-oriented adaptive surrogate construction for stochastic inversion, Comput. Methods Appl. Mech. Engrg., 339, 36-60 (2018) · Zbl 1441.65006
[63] Pinkus, Allan, (Ridge Functions. Ridge Functions, Cambridge Tracts in Mathematics (2015), Cambridge University Press) · Zbl 1331.41001
[64] Kerrek Stinson, David F. Gleich, Paul G. Constantine, A randomized algorithm for enumerating zonotope vertices. arXiv preprint arXiv:1602.06620; Kerrek Stinson, David F. Gleich, Paul G. Constantine, A randomized algorithm for enumerating zonotope vertices. arXiv preprint arXiv:1602.06620
[65] Nobile, F.; Tempone, R.; Webster, C., An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal., 46, 5, 2411-2442 (2008) · Zbl 1176.65007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.