×

A Bayesian estimation method for variational phase-field fracture problems. (English) Zbl 1462.74139

Summary: In this work, we propose a parameter estimation framework for fracture propagation problems. The fracture problem is described by a phase-field method. Parameter estimation is realized with a Bayesian approach. Here, the focus is on uncertainties arising in the solid material parameters and the critical energy release rate. A reference value (obtained on a sufficiently refined mesh) as the replacement of measurement data will be chosen, and their posterior distribution is obtained. Due to time- and mesh dependencies of the problem, the computational costs can be high. Using Bayesian inversion, we solve the problem on a relatively coarse mesh and fit the parameters. In several numerical examples our proposed framework is substantiated and the obtained load-displacement curves, that are usually the target functions, are matched with the reference values.

MSC:

74R10 Brittle fracture
74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Francfort, G.; Marigo, J-J, Revisiting brittle fracture as an energy minimization problem, J Mech Phys Solids, 46, 8, 1319-1342 (1998) · Zbl 0966.74060 · doi:10.1016/S0022-5096(98)00034-9
[2] Bourdin, B.; Francfort, G.; Marigo, J-J, The variational approach to fracture, J Elast, 91, 5-148 (2008) · Zbl 1176.74018 · doi:10.1007/s10659-007-9107-3
[3] Noii, N.; Wick, T., A phase-field description for pressurized and non-isothermal propagating fractures, Comput Methods Appl Mech Eng, 351, 860-890 (2019) · Zbl 1441.74213 · doi:10.1016/j.cma.2019.03.058
[4] Mang K, Wick T (2019) Numerical methods for variational phase-field fracture problems, Lecture notes at Leibniz University Hannover
[5] Heister, T.; Wheeler, MF; Wick, T., A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach, Comput Methods Appl Mech Eng, 290, 466-495 (2015) · Zbl 1423.76239 · doi:10.1016/j.cma.2015.03.009
[6] Heister, T.; Wick, T., Parallel solution, adaptivity, computational convergence, and open-source code of 2d and 3d pressurized phase-field fracture problems, PAMM, 18, 1, e201800353 (2018) · doi:10.1002/pamm.201800353
[7] Burke, S.; Ortner, C.; Süli, E., An adaptive finite element approximation of a generalized Ambrosio-Tortorelli functional, M3AS, 23, 9, 1663-1697 (2013) · Zbl 1266.74044
[8] Burke, S.; Ortner, C.; Süli, E., An adaptive finite element approximation of a variational model of brittle fracture, SIAM J Numer Anal, 48, 3, 980-1012 (2010) · Zbl 1305.74080 · doi:10.1137/080741033
[9] Artina, M.; Fornasier, M.; Micheletti, S.; Perotto, S., Anisotropic mesh adaptation for crack detection in brittle materials, SIAM J Sci Comput, 37, 4, B633-B659 (2015) · Zbl 1325.74134 · doi:10.1137/140970495
[10] Wick, T., Goal functional evaluations for phase-field fracture using PU-based DWR mesh adaptivity, Comput Mech, 57, 6, 1017-1035 (2016) · Zbl 1382.74130 · doi:10.1007/s00466-016-1275-1
[11] Mang K, Walloth M, Wick T, Wollner W, Mesh adaptivity for quasi-static phase-field fractures based on a residual-type a posteriori error estimator. GAMM-Mitteilungen e202000003
[12] Gerasimov, T.; Noii, N.; Allix, O.; De Lorenzis, L., A non-intrusive global/local approach applied to phase-field modeling of brittle fracture, Adv Model Simul Eng Sci, 5, 1, 14 (2018) · doi:10.1186/s40323-018-0105-8
[13] Noii N, Aldakheel F, Wick T, Wriggers P (2020). An adaptive global-local approach for phase-field modeling of anisotropic brittle fracture. Comput Methods Applied Mech Eng 361:112744 · Zbl 1442.74213
[14] Lord J, Morrell R (2006) Measurement good practice guide no. 98: elastic modulus measurement. National Physical Lab. Report 41-65
[15] Hoang, VH; Schwab, C.; Stuart, AM, Complexity analysis of accelerated MCMC methods for Bayesian inversion, Inverse Prob, 29, 8, 085010 (2013) · Zbl 1288.65004 · doi:10.1088/0266-5611/29/8/085010
[16] Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97-109 · Zbl 0219.65008
[17] Khodadadian A, Stadlbauer B, Heitzinger C (2020) Bayesian inversion for nanowire field-effect sensors. J Comput Electron 19(1), 147-159
[18] Mirsian, S.; Khodadadian, A.; Hedayati, M.; Manzour-ol Ajdad, A.; Kalantarinejad, R.; Heitzinger, C., A new method for selective functionalization of silicon nanowire sensors and Bayesian inversion for its parameters, Biosens Bioelectron, 142, 111527 (2019) · doi:10.1016/j.bios.2019.111527
[19] Minson, S.; Simons, M.; Beck, J., Bayesian inversion for finite fault earthquake source models i’theory and algorithm, Geophys J Int, 194, 3, 1701-1726 (2013) · doi:10.1093/gji/ggt180
[20] Cardiff M, Kitanidis P, Bayesian inversion for facies detection: an extensible level set framework. Water Resour Res 45(10) · Zbl 1202.86021
[21] Noii, N.; Aghayan, I., Characterization of elastic-plastic coated material properties by indentation techniques using optimisation algorithms and finite element analysis, Int J Mech Sci, 152, 465-480 (2019) · doi:10.1016/j.ijmecsci.2019.01.010
[22] Kochmann, D.; Drugan, W., Analytical stability conditions for elastic composite materials with a non-positive-definite phase, Proc R Soc A: Math Phys Eng Sci, 468, 2144, 2230-2254 (2012) · Zbl 1371.74013 · doi:10.1098/rspa.2011.0546
[23] Greaves, GN; Greer, A.; Lakes, RS; Rouxel, T., Poisson’s ratio and modern materials, Nat Mater, 10, 11, 823-837 (2011) · doi:10.1038/nmat3134
[24] Zehnder AT (2013) Griffith theory of fracture. Springer, New York, pp 1570-1573. 10.1007/978-0-387-92897-5_259
[25] Comi, C.; Perego, U., Fracture energy based bi-dissipative damage model for concrete, Int J Solids Struct, 38, 36-37, 6427-6454 (2001) · Zbl 0996.74069 · doi:10.1016/S0020-7683(01)00066-X
[26] Miehe, C.; Mauthe, S., Phase field modeling of fracture in multi-physics problems. Part III. crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media, Comput Methods Appl Mech Eng, 304, 619-655 (2016) · Zbl 1425.74423 · doi:10.1016/j.cma.2015.09.021
[27] Heider, Y.; Markert, B., A phase-field modeling approach of hydraulic fracture in saturated porous media, Mech Res Commun, 80, 38-46 (2017) · doi:10.1016/j.mechrescom.2016.07.002
[28] Lee, S.; Wheeler, MF; Wick, T., Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model, Comput Methods Appl Mech Eng, 305, 111-132 (2016) · Zbl 1425.74419 · doi:10.1016/j.cma.2016.02.037
[29] Kinderlehrer D, Stampacchia G (2000) An introduction to variational inequalities and their applications. Class Appl Math Soc Ind Appl Math · Zbl 0988.49003
[30] Pham, K.; Amor, H.; Marigo, J-J; Maurini, C., Gradient damage models and their use to approximate brittle fracture, Int J Damage Mech, 20, 4, 618-652 (2011) · doi:10.1177/1056789510386852
[31] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput Meth Appl Mech Eng, 199, 2765-2778 (2010) · Zbl 1231.74022 · doi:10.1016/j.cma.2010.04.011
[32] Aldakheel, F.; Mauthe, S.; Miehe, C., Towards phase field modeling of ductile fracture in gradient-extended elastic-plastic solids, PAMM, 14, 1, 411-412 (2014) · doi:10.1002/pamm.201410193
[33] Aldakheel, F.; Hudobivnik, B.; Hussein, A.; Wriggers, P., Phase-field modeling of brittle fracture using an efficient virtual element scheme, Comput Methods Appl Mech Eng, 341, 443-466 (2018) · Zbl 1440.74352 · doi:10.1016/j.cma.2018.07.008
[34] Teichtmeister, S.; Kienle, D.; Aldakheel, F.; Keip, M-A, Phase field modeling of fracture in anisotropic brittle solids, Int J Non-Linear Mech, 97, 1-21 (2017) · doi:10.1016/j.ijnonlinmec.2017.06.018
[35] Marigo, J-J; Maurini, C.; Pham, K., An overview of the modelling of fracture by gradient damage models, Meccanica, 51, 12, 3107-3128 (2016) · Zbl 1374.74109 · doi:10.1007/s11012-016-0538-4
[36] Ghanem, RG; Spanos, PD, Stochastic finite elements: a spectral approach (2003), North Chelmsford: Courier Corporation, North Chelmsford
[37] Smith, RC, Uncertainty quantification: theory, implementation, and applications (2013), Philadelphia: SIAM, Philadelphia
[38] Stuart, AM, Inverse problems: a Bayesian perspective, Acta numerica, 19, 451-559 (2010) · Zbl 1242.65142 · doi:10.1017/S0962492910000061
[39] Smith, AF; Roberts, GO, Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods, J R Stat Soc: Ser B (Methodol), 55, 1, 3-23 (1993) · Zbl 0779.62030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.