×

Standard model of fermions on the domain wall in five-dimensional space-time. (English. Russian original) Zbl 1288.81158

J. Math. Sci., New York 151, No. 2, 2801-2812 (2008); translation from Zap. Nauchn. Semin. POMI 347, 5-29 (2007).
Summary: The mechanism of generation of the Standard Model for fermions on the domain wall in five-dimensional space-time is presented. As a result of self-interaction of five-dimensional fermions and gravity induced by matter fields, in the strong coupling regime, in the model there arises a spontaneous translational symmetry breaking, which leads to localization of light particles on a \(3+1\)-dimensional domain wall (“3-brane”) that is embedded into a five-dimensional anti-de Sitter space-time \((\mathrm{AdS}_5)\). Appropriate low-energy, effective action, classical kink-like vacuum configurations for the gravity and scalar fields are investigated. Mass spectra for light composite particles and their coupling constants interaction in ultra-low-energy, which localize on the brane, are explored. We establish estimates of characteristic scales and constants interactions of the model and also a relation between the bulk five-dimensional gravitational constant, curvature of \((\mathrm{AdS}_5)\) space-time, and brane Newton’s constants. The induced cosmological constant on the brane exactly vanishes in all orders of the theory perturbation. We find out that scalar interaction is strongly suppressed at ultra-low-energy, and the brane fluctuations (branons) are suitable “sterile” canditates for explanation of the phenomenon of Dark Matter.

MSC:

81V22 Unified quantum theories
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett., B125, 136 (1983); ibid., B125, 139 (1983); V. A. Rubakov, Usp. Fiz. Nauk, 171, 913 (2001); Usp. Fiz. Nauk, 173, 219 (2003). · doi:10.1016/0370-2693(83)91253-4
[2] K. Akama, Lect. Notes Phys., 176, 267 (1982); hep-th/0001113; M. Visser, Phys. Lett., B159, 22 (1985); hep-th/9910093; N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Lett., B429, 263 (1998); Phys. Rev., D59, 086004 (1999); I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Lett., B436, 257 (1998); M. Gogberashvili, Mod. Phys. Lett., A14, 2025 (1999); Int. J. Mod. Phys., D11, 1639 (2002); hep-ph/0001109; L. Randall and R. Sundrum, Phys. Rev. Lett., 83, 3370, 4690 (1999). · doi:10.1007/3-540-11994-9_41
[3] V. A. Rubakov, Phys. Usp., 44, 871 (2001); Phys. Usp., 46, 211 (2003). · doi:10.1070/PU2001v044n09ABEH001000
[4] I. Antoniadis, ”Physics with large extra dimensions,” in: High-Energy Physics, Beatenberg (2001), p. 301; hep-th/0102202; S. Forste, Fortsch. Phys., 50, 221 (2002).
[5] Yu. A. Kubyshin, ”Models with extra dimensions and their phenomenology,” (2001); hep-ph/0111027; J. Hewett and M. Spiropulu, Ann. Rev. Nucl. Part. Sci., 52, 397 (2002).
[6] R. Dick, Class. Quant. Grav., 18, R1 (2001); D. Langlois, Prog. Theor. Phys. Suppl., 148, 181 (2003); R. Maartens, Living Rev. Rel., 7, 7 (2004); P. Brax, C. van de Bruck, and A. C. Davis, Rept. Prog. Phys., 67, 2183 (2004). · Zbl 0996.83001 · doi:10.1088/0264-9381/18/17/201
[7] C. P. Burgess, Annals Phys., 313, 283 (2004). · Zbl 1054.83028 · doi:10.1016/j.aop.2004.04.012
[8] G. Gabadadze, ICTP Lectures on Large Extra Dimensions (2003); hep-ph/0308112. · Zbl 1064.83066
[9] F. Feruglio, Eur. Phys. J., C33, S114 (2004). · doi:10.1140/epjcd/s2004-03-1699-8
[10] C. Csaki, TASI Lectures on Extra Dimensions and Branes (2004); hep-ph/0404096; T. G. Rizzo, Pedagogical Introduction on Extra Dimensions (2004); hep-ph/0409309.
[11] A. A. Andrianov, V. A. Andrianov, P. Giacconi, and R. Soldati, JHEP, 07, 003 (2005). · doi:10.1088/1126-6708/2005/07/003
[12] O. DeWolfe, D. Z. Freedman, S. S. Gubser, and A. Karch, Phys. Rev., D62, 046008 (2000).
[13] T. Gherghetta and M. E. Shaposhnikov, Phys. Rev. Lett., 85, 240 (2000); M. Laine, H. B. Meyer, K. Rummukainen, and M. Shaposhnikov, JHEP, 01, 068 (2003); JHEP, 04, 027 (2004). · Zbl 1369.83091 · doi:10.1103/PhysRevLett.85.240
[14] A. A. Andrianov, V. A. Andrianov, P. Giacconi, and R. Soldati, JHEP, 07, 063 (2003). · doi:10.1088/1126-6708/2003/07/063
[15] A. A. Andrianov and L. Bonora, Nucl. Phys., B233, 232 (1984); ibid., B233, 247 (1984). · doi:10.1016/0550-3213(84)90413-9
[16] Ya. B. Zel’dovich, Pis’ma ZETF, 6, 883 (1967); A. D. Sakharov, Dokl. Akad. Nauk SSSR, 177, 70 (1967).
[17] E. G. Adelberger, B. R. Heckel, and A. E. Nelson, Ann. Rev. Nucl. Part. Sci., 53, 77 (2003). · doi:10.1146/annurev.nucl.53.041002.110503
[18] A. Dobado and A. L. Maroto, Nucl. Phys., B592, 203 (2001); J. Alcaraz, J. A. R. Cembranos, A. Dobado, and A. L. Maroto, Phys. Rev., D67, 075010 (2003); J. A. R. Cembranos, A. Dobado, and A. L. Maroto, Phys. Rev., D68, 103505 (2003); Phys. Rev., D70, 096001 (2004).
[19] S. L. Dubovsky, V. A. Rubakov, and P. G. Tinyakov, Phys. Rev., D62, 105011 (2000); S. L. Dubovsky and V. A. Rubakov, Int. J. Mod. Phys., A16, 4331 (2001).
[20] V. A. Miransky, M. Tanabashi, and K. Yamawaki, Phys. Lett., B221, 177 (1989). · doi:10.1016/0370-2693(89)91494-9
[21] W. Pauli, Teoria della Relatività, Boringhieri, Torino (1970), pp. 65–66.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.