×

Monolithic approach to thermal fluid-structure interaction with nonconforming interfaces. (English) Zbl 1233.74006

Summary: This paper presents a monolithic approach to the thermal fluid-structure interaction (FSI) with nonconforming interfaces. The thermal viscous flow is governed by the Boussinesq approximation and the incompressible Navier-Stokes equations. The motion of the fluid domain is accounted for by an arbitrary Lagrangian-Eulerian (ALE) strategy. A pseudo-solid formulation is used to manage the deformation of the fluid domain. The structure is described by the geometrically nonlinear thermoelastic dynamics. An efficient data transfer strategy based on the Gauss points is proposed to guarantee the equilibrium of the stresses and heat along the interface. The resulting strongly coupled set of nonlinear equations for the fluid, structure, and heat is solved by a monolithic solution procedure. A numerical example is presented to demonstrate the robustness and efficiency of the methodology.

MSC:

74D10 Nonlinear constitutive equations for materials with memory
74S05 Finite element methods applied to problems in solid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

FEAPpv
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kamakoti, R. and Shyy, W. Fluid-structure interaction for aeroelastic applications. Progress in Aerospace Sciences, 40(8), 535–558 (2004) · Zbl 1075.76043 · doi:10.1016/j.paerosci.2005.01.001
[2] Sadeghi, M. and Liu, F. Coupled fluid-structure simulation for turbomachinery blade rows. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Jan. 10–13, Reno, NV, 2005-0018 (2005)
[3] Kroyer, R. FSI analysis in supersonic fluid flow. Computers and Structures, 81(8), 755–764 (2003) · doi:10.1016/S0045-7949(02)00423-6
[4] Van Loon, R., Anderson, P. D., Baaijens, F. P. T., and van de Vosse, F. N. A three-dimensional fluid-structure interaction method for heart valve modelling. Comptes Rendus Mecanique, 333(12), 856–866 (2005) · Zbl 1173.76319 · doi:10.1016/j.crme.2005.10.008
[5] Kang, D. G., Jhung, M. J., and Chang, S. H. Fluid-structure interaction analysis for pressurizer surge line subjected to thermal stratification. Nuclear Engineering and Design, 241(1), 257–269 (2010) · doi:10.1016/j.nucengdes.2010.10.023
[6] Young, Y. Fluid-structure interaction analysis of flexible composite marine propellers. Journal of Fluids and Structures, 24(6), 799–818 (2008) · doi:10.1016/j.jfluidstructs.2007.12.010
[7] Bungartz, H. J. Fluid-Structure Interaction II: Modelling, Simulation, Optimization, Springer-Verlag, Berlin, 1–424 (2010) · Zbl 1201.76008
[8] Dettmer, W. and Peric, D. A computational framework for fluid-structure interaction: finite element formulation and applications. Computer Methods in Applied Mechanics and Engineering, 195(41–43), 5754–5779 (2006) · Zbl 1155.76354 · doi:10.1016/j.cma.2005.10.019
[9] Pironkov, P. Numerical Simulation of Thermal Fluid-Structure Interaction, Ph. D. dissertation, Technische Universitat Darmstadt, 31–50 (2010)
[10] Le Tallec, P. and Mouro, J. Fluid-structure interaction with large structural displacements. Computer Methods in Applied Mechanics and Engineering, 190(24–25), 3039–3067 (2001) · Zbl 1001.74040 · doi:10.1016/S0045-7825(00)00381-9
[11] Walhorn, E., Kölke, A., Hübner, B., and Dinkler, D. Fluid-structure coupling within a monolithic model involving free surface flows. Computers and Structures, 83(25), 2100–2111 (2005) · doi:10.1016/j.compstruc.2005.03.010
[12] Heil, M., Hazel, A. L., and Boyle, J. Solvers for large-displacement fluid-structure interaction problems: segregated versus monolithic approaches. Computational Mechanics, 43(1), 91–101 (2008) · Zbl 1309.76126 · doi:10.1007/s00466-008-0270-6
[13] Duchaine, F., Corpron, A., Pons, L., Moureau, V., Nicoud, F., and Poinsot, T. Development and assessment of a coupled strategy for conjugate heat transfer with large eddy simulation: application to a cooled turbine blade. International Journal of Heat and Fluid Flow, 30(6), 1129–1141 (2009) · doi:10.1016/j.ijheatfluidflow.2009.07.004
[14] Zienkiewicz, O. C., Taylor, R. L., and Zhu, J. Z. The Finite Element Method-Its Basis and Fundamentals, Vol. 1, Elsevier Butterworth-Heinemann, Amsterdam/London, 430–452 (2005)
[15] Haupt, M., Niesner, R., Unger, R., and Horst, P. Coupling techniques for thermal and mechanical fluid-structure-interactions in aeronautics. Proceedings in Applied Mathematics and Mechanics, 5(1), 19–22 (2005) · Zbl 1391.74072 · doi:10.1002/pamm.200510006
[16] Donea, J., Huerta, A., Ponthot, J. P., and Rodríguez-Ferran, A. Arbitrary Lagrangian-Eulerian methods. Encyclopedia of Computational Mechanics, John Wiley & Sons, West Sussex, England, 1–25 (2004)
[17] Souli, M., Ouahsine, A., and Lewin, L. ALE formulation for fluid-structure interaction problems. Computer Methods in Applied Mechanics and Engineering, 190(5–7), 659–675 (2000) · Zbl 1012.76051 · doi:10.1016/S0045-7825(99)00432-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.