×

Operator-valued measures, dilations, and the theory of frames. (English) Zbl 1323.46031

Mem. Am. Math. Soc. 1075, viii, 84 p. (2014).
In operator theory, Naimark’s dilation theorem characterizes positive operator-valued measures (POVMs) as follows: Let \(E:\Sigma\to B(\mathcal{H})\) be a positive operator-valued measure. Then there exists a Hilbert space \(\mathcal{K}\), a bounded linear operator \(V:\mathcal{H}\to\mathcal{K}\), and an orthogonal projection-valued measure (OPVM) \(F:\Sigma\to B(\mathcal{K})\) such that \(E(B)=V^\ast F(B) V\). One of the primary objectives of this memoir is to provide extensions of Naimark’s fundamental theorem to the case of non-Hilbertian normed Banach operator-valued measures. The main results are outlined in the introduction of this memoir as follows.
Theorem A states that operator-valued measures (OVM) factor through projection-valued measures: For Banach spaces \(X,Y\), if \(E:\Sigma\to B(X,Y)\) is an operator-valued measure, then there is an intermediate Banach space \(Z\), bounded operators \(S:Z\to Y\) and \(T:X\to Z\) and a projection-valued probability measure \(F:\Sigma\to B(Z)\) such that \(E(B)=S\, F(B)\, T\). The system \((F,Z,S,T)\) is called a Banach dilation system (or Hilbert system if \(Z\) is a Hilbert space).
Theorem B addresses properties of injective dilations. When the OVM \(E:\Sigma\to B(H)\) admits a Hilbert dilation \((E,\mathcal{H},S,T)\), Theorem C states that there exists a corresponding Hilbert dilation system \((F,\mathcal{K},V^\ast,V)\) such that \(V:\mathcal{H}\to\mathcal{K}\) is an isometric embedding.
A framing for a Banach space \(X\) is a pair of sequences \(\{x_i\}\subset X\) and \(\{y_i\}\subset X^\ast\) such that \(x=\sum \langle x, y_i\rangle x_i\) converges unconditionally for any \(x\in X\). Framings generalize frames to Banach spaces and they are scalable: if \(\{\alpha_i\}\subset\mathbb{C}\setminus\{0\}\), then \(\{\alpha_ix_i, y_i/\overline{\alpha}_i\}\) is a framing when \(\{x_i, y_i\}\) is. Theorem D states that if \(\{x_i,y_i\}\) is a framing for a Hilbert space \(\mathcal{H}\), then the OVPM \(E\) induced by this framing has a Hilbert space dilation if and only if there is a rescaling sequence \(\{\alpha_i\}\subset\mathbb{C}\) such that \(\{\alpha_i x_i\}\) and \(\{y_i/\overline{\alpha}_i\} \) are frames for \(\mathcal{H}\). In this case, \(E\) is a completely bounded map. This case occurs in particular when \(\inf \|x_i\|\|y_i\|>0\). Not all framings are rescalable to frames as Theorem E states: There exists a framing for a Hilbert space \(\mathcal{H}\) whose induced OVM \(E\) is not completely bounded, hence cannot be rescaled to a framing that admits a Hilbert space dilation.
The remainder of the memoir focuses on systems of unitary operators. Corollary F (to Theorem D) states that if \(\mathcal{U}_1\) and \(\mathcal{U}_2\) are unitary systems on a separable Hilbert space \(\mathcal{H}\) (such as Gabor or wavelet systems) and if there exist \(x,y\in\mathcal{H}\) such that \(\{\mathcal{U}_1x,\mathcal{U}_2y\}\) is a framing for \(\mathcal{H}\), then \(\{\mathcal{U}_1x\}\) and \(\{\mathcal{U}_2y\}\) are both frames for \(\mathcal{H}\). Further results involve applications to Banach and von Neumann algebras. Theorem G states that if \(\mathcal{A}\) is a purely atomic abelian von Neumann algebra acting on a separable Hilbert space, then every ultra-weakly continuous linear map \(\phi:\mathcal{A}\to B(\mathcal{H})\) admits a Banach space \(Z\) and ultra-weakly continuous unital homomorphism \(\pi:\mathcal{A}\to B(Z)\), and bounded operators \(T:\mathcal{H}\to Z\) and \(S:Z\to\mathcal{H}\) such that \(\phi(a)=S\pi(a)T\) for all \(a\in\mathcal{A}\). The ideas in the proof of Theorem G provide the basis for a universal dilation theorem, Theorem H for bounded mapping between Banach algebras, which states that if \(\mathcal{A}\) is a Banach algebra, \(X\) is a Banach space, and \(\phi:\mathcal{A}\to B(X)\) is a bounded linear operator, then there exists a Banach space \(Z\), a bounded linear unital homomorphism \(\pi:\mathcal{A}\to B(Z)\), and bounded linear operators \(T:X\to Z\) and \(S:Z\to X\) such that \(\phi(a)=S\pi(a) T\) for all \(a\in\mathcal{A}\). Further new results for mappings of von Neumann algebras in the noncommutative case are also given which generalize particular cases of W. F. Stinespring’s dilation theorem [Proc. Am. Math. Soc. 6, 211–216 (1955; Zbl 0064.36703)]. Standard discrete Hilbert space frame theory can be identified as the special case in which the domain algebra is abelian and purely atomic, the map is completely bounded, and the OVM is purely atomic and completely bounded with rank-1 atoms. Connections are also made with Kadison’s similarity problem for bounded von Neumann algebra homomorphisms.

MSC:

46G10 Vector-valued measures and integration
46L07 Operator spaces and completely bounded maps
46L10 General theory of von Neumann algebras
46L51 Noncommutative measure and integration
47A20 Dilations, extensions, compressions of linear operators
42C15 General harmonic expansions, frames
46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces
46B25 Classical Banach spaces in the general theory
47B48 Linear operators on Banach algebras

Citations:

Zbl 0064.36703
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] William Arveson, Dilation theory yesterday and today, A glimpse at Hilbert space operators, Oper. Theory Adv. Appl., vol. 207, Birkhäuser Verlag, Basel, 2010, pp. 99-123. · Zbl 1217.47016 · doi:10.1007/978-3-0346-0347-8_8
[2] John W. Bunce, The similarity problem for representations of \(C^{\ast } \)-algebras, Proc. Amer. Math. Soc. 81 (1981), no. 3, 409-414. · Zbl 0453.46048 · doi:10.1090/S0002-9939-1981-0597652-0
[3] L. J. Bunce and J. D. Maitland Wright, The Mackey-Gleason problem for vector measures on projections in von Neumann algebras, J. London Math. Soc. (2) 49 (1994), no. 1, 133-149. · Zbl 0796.46045 · doi:10.1112/jlms/49.1.133
[4] P. G. Casazza, S. J. Dilworth, E. Odell, Th. Schlumprecht, and A. Zsák, Coefficient quantization for frames in Banach spaces, J. Math. Anal. Appl. 348 (2008), no. 1, 66-86. · Zbl 1159.46008 · doi:10.1016/j.jmaa.2008.06.055
[5] Peter G. Casazza, Deguang Han, and David R. Larson, Frames for Banach spaces, The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999) Contemp. Math., vol. 247, Amer. Math. Soc., Providence, RI, 1999, pp. 149-182. · Zbl 0947.46010 · doi:10.1090/conm/247/03801
[6] Peter G. Casazza, Gitta Kutyniok, and Shidong Li, Fusion frames and distributed processing, Appl. Comput. Harmon. Anal. 25 (2008), no. 1, 114-132. · Zbl 1258.42029 · doi:10.1016/j.acha.2007.10.001
[7] Man Duen Choi, Completely positive linear maps on complex matrices, Linear Algebra and Appl. 10 (1975), 285-290. · Zbl 0327.15018
[8] Erik Christensen, On Non Self-Adjoint Representations of C*-Algebras, Amer. J. Math. 103 (1981), no. 5, 817-833. · Zbl 0498.46042 · doi:10.2307/2374248
[9] Ole Christensen, An introduction to frames and Riesz bases, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2003. · Zbl 1017.42022
[10] Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. · Zbl 0776.42018
[11] Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995. · Zbl 0855.47016
[12] Xingde Dai and David R. Larson, Wandering vectors for unitary systems and orthogonal wavelets, Mem. Amer. Math. Soc. 134 (1998), no. 640, viii+68. · Zbl 0990.42022 · doi:10.1090/memo/0640
[13] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366. · Zbl 0049.32401 · doi:10.1090/S0002-9947-1952-0047179-6
[14] Nelson Dunford and Jacob T. Schwartz, Linear operators. Part III: Spectral operators, Interscience Publishers [John Wiley & Sons, Inc.], New York-London-Sydney, 1971. With the assistance of William G. Bade and Robert G. Bartle; Pure and Applied Mathematics, Vol. VII. · Zbl 0243.47001
[15] Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, and Václav Zizler, Functional analysis and infinite-dimensional geometry, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 8, Springer-Verlag, New York, 2001. · Zbl 0981.46001
[16] Massimo Fornasier and Holger Rauhut, Continuous frames, function spaces, and the discretization problem, J. Fourier Anal. Appl. 11 (2005), no. 3, 245-287. · Zbl 1093.42020 · doi:10.1007/s00041-005-4053-6
[17] Jean-Pierre Gabardo and Deguang Han, Frames associated with measurable spaces, Adv. Comput. Math. 18 (2003), no. 2-4, 127-147. Frames. · Zbl 1033.42036 · doi:10.1023/A:1021312429186
[18] Jean-Pierre Gabardo and Deguang Han, Frame representations for group-like unitary operator systems, J. Operator Theory 49 (2003), no. 2, 223-244. · Zbl 1027.46092
[19] Uffe Haagerup, Solution of the similarity problem for cyclic representations of \(C^{\ast } \)-algebras, Ann. of Math. (2) 118 (1983), no. 2, 215-240. · Zbl 0543.46033 · doi:10.2307/2007028
[20] D. W. Hadwin, Dilations and Hahn decompositions for linear maps, Canad. J. Math. 33 (1981), no. 4, 826-839. · Zbl 0426.46037 · doi:10.4153/CJM-1981-064-7
[21] Deguang Han, Frame representations and Parseval duals with applications to Gabor frames, Trans. Amer. Math. Soc. 360 (2008), no. 6, 3307-3326. · Zbl 1213.42110 · doi:10.1090/S0002-9947-08-04435-8
[22] Deguang Han, Dilations and completions for Gabor systems, J. Fourier Anal. Appl. 15 (2009), no. 2, 201-217. · Zbl 1163.42012 · doi:10.1007/s00041-008-9028-y
[23] Deguang Han and David R. Larson, Frames, bases and group representations, Mem. Amer. Math. Soc. 147 (2000), no. 697, x+94. · Zbl 0971.42023 · doi:10.1090/memo/0697
[24] Richard V. Kadison, On the orthogonalization of operator representations, Amer. J. Math. 77 (1955), 600-620. · Zbl 0064.36605
[25] Victor Kaftal, David R. Larson, and Shuang Zhang, Operator-valued frames, Trans. Amer. Math. Soc. 361 (2009), no. 12, 6349-6385. · Zbl 1185.42032 · doi:10.1090/S0002-9947-09-04915-0
[26] Shidong Li and Hidemitsu Ogawa, Pseudoframes for subspaces with applications, J. Fourier Anal. Appl. 10 (2004), no. 4, 409-431. · Zbl 1058.42024 · doi:10.1007/s00041-004-3039-0
[27] Shidong Li and Hidemitsu Ogawa, Pseudo-duals of frames with applications, Appl. Comput. Harmon. Anal. 11 (2001), no. 2, 289-304. · Zbl 0984.42024 · doi:10.1006/acha.2001.0347
[28] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Springer-Verlag, Berlin-New York, 1977. Sequence spaces; Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. · Zbl 0362.46013
[29] George W. Mackey, Imprimitivity for representations of locally compact groups. I, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 537-545. · Zbl 0035.06901
[30] Hiroyuki Osaka, Completely bounded maps between the preduals of von Neumann algebras, Proc. Amer. Math. Soc. 111 (1991), no. 4, 961-965. · Zbl 0749.46037 · doi:10.1090/S0002-9939-1991-1052872-2
[31] Vern Paulsen, Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics, vol. 78, Cambridge University Press, Cambridge, 2002. · Zbl 1029.47003
[32] Gilles Pisier, Similarity problems and completely bounded maps, Second, expanded edition, Lecture Notes in Mathematics, vol. 1618, Springer-Verlag, Berlin, 2001. Includes the solution to “The Halmos problem”. · Zbl 0971.47016
[33] Raymond A. Ryan, Introduction to tensor products of Banach spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2002. · Zbl 1090.46001
[34] W. Rudin, Real and Complex Analysis, McGraw-Hill,Inc., 1997. · Zbl 0954.26001
[35] Ivan Singer, Bases in Banach spaces. I, Springer-Verlag, New York-Berlin, 1970. Die Grundlehren der mathematischen Wissenschaften, Band 154. · Zbl 0198.16601
[36] W. Forrest Stinespring, Positive functions on \(C^*\)-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216. · Zbl 0064.36703 · doi:10.1090/S0002-9939-1955-0069403-4
[37] Wenchang Sun, \(G\)-frames and \(g\)-Riesz bases, J. Math. Anal. Appl. 322 (2006), no. 1, 437-452. · Zbl 1129.42017 · doi:10.1016/j.jmaa.2005.09.039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.