×

Quantification of fibre polymerization through Fourier space image analysis. (English) Zbl 1228.94012

Summary: Quantification of changes in the total length of randomly oriented and possibly curved lines appearing in an image is a necessity in a wide variety of biological applications. Here, we present an automated approach based upon Fourier space analysis. Scaled, band-pass filtered power spectral densities of greyscale images are integrated to provide a quantitative measurement of the total length of lines of a particular range of thicknesses appearing in an image. A procedure is presented to correct for changes in image intensity. The method is most accurate for two-dimensional processes with fibres that do not occlude one another.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
94A11 Application of orthogonal and other special functions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] 28 pp 94– (1992) · doi:10.1049/el:19920058
[2] ENG FRACT MECH 4 pp 175– (1972) · doi:10.1016/0013-7944(72)90087-2
[3] INT J SOLIDS STRUCT 40 pp 5441– (2003) · Zbl 1060.74518 · doi:10.1016/S0020-7683(03)00281-6
[4] Carlsson 39 pp 91– (2010) · doi:10.1146/annurev.biophys.093008.131207
[5] Journal of Cell Science 122 (10) pp 1665– (2009) · doi:10.1242/jcs.042986
[6] Cooper 267 pp 183– (2008) · doi:10.1016/S1937-6448(08)00604-7
[7] Cooper, The Journal of Cell Biology 106 (4) pp 1229– (1988) · doi:10.1083/jcb.106.4.1229
[8] PNAS 103 (38) pp 14015– (2006) · doi:10.1073/pnas.0605837103
[9] Deshpande, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463 (2079) pp 787– (2007) · Zbl 1131.92025 · doi:10.1098/rspa.2006.1793
[10] ENG FRACT MECH 74 pp 151– (2007) · doi:10.1016/j.engfracmech.2006.01.023
[11] 26 pp 18– (2009)
[12] TAPPI 43 pp 737– (1960)
[13] PNAS 102 (44) pp 15895– (2005) · doi:10.1073/pnas.0506041102
[14] Journal of Biological Chemistry 282 (8) pp 5871– (2007) · doi:10.1074/jbc.M609850200
[15] Lee, Journal of orthopaedic research : official publication of the Orthopaedic Research Society 18 (2) pp 322– (2000) · doi:10.1002/jor.1100180222
[16] INT J SOLIDS STRUCT 43 pp 6413– (2006) · Zbl 1120.74425 · doi:10.1016/j.ijsolstr.2005.11.003
[17] Biophysical Journal 88 (2) pp 778– (2005) · doi:10.1529/biophysj.104.041947
[18] Biophysical Journal 88 (2) pp 765– (2005) · doi:10.1529/biophysj.104.040808
[19] McGarry, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367 (1902) pp 3477– (2009) · Zbl 1185.74061 · doi:10.1098/rsta.2009.0097
[20] Nekouzadeh, Journal of biomechanics 40 (14) pp 3070– (2007) · Zbl 1188.92008 · doi:10.1016/j.jbiomech.2007.03.019
[21] Nekouzadeh, Journal of biomechanics 41 (14) pp 2964– (2008) · doi:10.1016/j.jbiomech.2008.07.033
[22] Biophysical Journal 95 (2) pp 527– (2008) · doi:10.1529/biophysj.107.127399
[23] Pryse, Annals of biomedical engineering 31 (10) pp 1287– (2003) · doi:10.1114/1.1615571
[24] J BIOMED MATER RES PART A 88A pp 322– (2009) · doi:10.1002/jbm.a.31847
[25] INT J FRACT 14 pp 453– (1978) · doi:10.1007/BF01390468
[26] MATER STRUCT 41 pp 189– (2008) · doi:10.1617/s11527-007-9229-x
[27] Wakatsuki, Biophysical Journal 79 (5) pp 2353– (2000) · doi:10.1016/S0006-3495(00)76481-2
[28] IEEE TRANS IMAGE PROCES 16 pp 310– (2007) · Zbl 05453668 · doi:10.1109/TIP.2006.887731
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.