×

Hermitian-non-Hermitian interfaces in quantum theory. (English) Zbl 1404.81106

Summary: In the global framework of quantum theory, the individual quantum systems seem clearly separated into two families with the respective manifestly Hermitian and hiddenly Hermitian operators of their Hamiltonian. In the light of certain preliminary studies, these two families seem to have an empty overlap. In this paper, we will show that whenever the interaction potentials are chosen to be weakly nonlocal, the separation of the two families may disappear. The overlaps alias interfaces between the Hermitian and non-Hermitian descriptions of a unitarily evolving quantum system in question may become nonempty. This assertion will be illustrated via a few analytically solvable elementary models.

MSC:

81Q12 Nonselfadjoint operator theory in quantum theory including creation and destruction operators
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Dyson, F. J., General theory of spin-wave interactions, Physical Review A: Atomic, Molecular and Optical Physics, 102, 5, 1217-1230, (1956) · Zbl 0072.23601 · doi:10.1103/PhysRev.102.1217
[2] Scholtz, F. G.; Geyer, H. B.; Hahne, F. J., Quasi-Hermitian operators in quantum mechanics and the variational principle, Annals of Physics, 213, 1, 74-101, (1992) · Zbl 0749.47041 · doi:10.1016/0003-4916(92)90284-S
[3] Mostafazadeh, A., Pseudo-Hermitian representation of quantum mechanics, International Journal of Geometric Methods in Modern Physics, 7, 7, 1191-1306, (2010) · Zbl 1208.81095 · doi:10.1142/S0219887810004816
[4] Bender, C. M., Making sense of non-Hermitian Hamiltonians, Reports on Progress in Physics, 70, 6, 947-1018, (2007) · doi:10.1088/0034-4885/70/6/r03
[5] Dieudonné, J., Quasi-Hermitian operators, Proceedings of the International Symposium on Linear Spaces (Jerusalem, 1960) · Zbl 0114.31601
[6] Alexandre, J.; Bender, C. M.; Millington, P., Non-Hermitian extension of gauge theories and implications for neutrino physics, Journal of High Energy Physics, 2015, 11, article no. 111, 1-24, (2015) · doi:10.1007/JHEP11(2015)111
[7] Alexandre, J.; Bender, C. M.; Millington, P., Light neutrino masses from a non-Hermitian Yukawa theory, Journal of Physics: Conference Series, 873, 012047, (2017) · doi:10.1088/1742-6596/873/1/012047
[8] Milburn, T. J.; Doppler, J.; Holmes, C. A.; Portolan, S.; Rotter, S.; Rabl, P., General description of quasiadiabatic dynamical phenomena near exceptional points, Physical Review A: Atomic, Molecular and Optical Physics, 92, 5, (2015) · doi:10.1103/PhysRevA.92.052124
[9] Mostafazadeh, A., Time-Dependent Pseudo-Hermitian Hamiltonians Defining a Unitary Quantum System and Uniqueness of the Metric Operator, Physics Letters B, 650, 208-212, (2007) · Zbl 1248.81049 · doi:10.1016/j.physletb.2007.04.064
[10] Bender, C. M.; Boettcher, S., Real spectra in non-Hermitian Hamiltonians having PT symmetry, Physical Review Letters, 80, 24, 5243-5246, (1998) · Zbl 0947.81018 · doi:10.1103/PhysRevLett.80.5243
[11] Bender, C. M.; Brody, D. C.; Jones, H. F., Complex extension of quantum mechanics, Physical Review Letters, 89, (2002) · Zbl 1267.81234
[12] Bender, C. M.; Brody, D. C.; Jones, H. F., Erratum: Complex Extension of Quantum Mechanics, Physical Review Letters, 92, 11, (2004) · doi:10.1103/PhysRevLett.92.119902
[13] Borisov, D. I., Eigenvalue collision for PT-symmetric waveguide, Acta Polytechnica, 54, 2, 93-100, (2014)
[14] Borisov, D. I.; Růžička, F.; Znojil, M., Multiply degenerate exceptional points and quantum phase transitions, International Journal of Theoretical Physics, 54, 12, 4293-4305, (2015) · Zbl 1329.81037 · doi:10.1007/s10773-014-2493-y
[15] Znojil, M., Solvable model of quantum phase transitions and the symbolic-manipulation-based study of its multiply degenerate exceptional points and of their unfolding, Annals of Physics (NY), 336, 98-111, (2013) · Zbl 1286.81103
[16] Borisov, D. I.; Znojil, M.; Bagarello, F.; Passante, R.; Trapani, C., Mathematical and physical meaning of the crossings of energy levels in PT-symmetric systems, Non-Hermitian Hamiltonians in Quantum Physics, 201-217, (2016), Springer · Zbl 1402.81149
[17] Rüter, C. E.; Makris, K. G.; El-Ganainy, R.; Christodoulides, D. N.; Segev, M.; Kip, D., Observation of parity-time symmetry in optics, Nature Physics, 6, 3, 192-195, (2010) · doi:10.1038/nphys1515
[18] Bagarello, F.; Gazeau, J. P.; Szafraniec, F. H.; Znojil, M., Non-Selfadjoint Operators in Quantum Physics, (2015), Hoboken, NJ: John Wiley & Sons, Inc., Hoboken, NJ · Zbl 1329.81021
[19] Znojil, M., Scattering theory using smeared non-Hermitian potentials, Physical Review D: Particles, Fields, Gravitation and Cosmology, 80, 4, (2009)
[20] Jones, H. F., Scattering from localized non-Hermitian potentials, Physical Review D, 76, (2007)
[21] Jones, H. F., Interface between Hermitian and non-Hermitian Hamiltonians in a model calculation, Physical Review D, 78, (2008)
[22] Znojil, M., Discrete PT-symmetric models of scattering, Journal of Physics A: Mathematical and Theoretical, 41, 29, (2008) · Zbl 1149.81366
[23] Znojil, M., Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators, Symmetry Integrability and Geometry Methods and Applications, 5, (2009) · Zbl 1188.81161
[24] Styer, D. F., Nine formulations of quantum mechanics, American Journal of Physics, 70, 3, 288-297, (2002) · doi:10.1119/1.1445404
[25] Messiah, A., Quantum Mechanics, I, (1961), North Holland, Amsterdam
[26] Znojil, M., Three-Hilbert-space formulation of quantum mechanics, Symmetry Integrability and Geometry Methods and Applications, 5, (2009) · Zbl 1160.81017 · doi:10.3842/SIGMA.2009.001
[27] Jones, H. F., Proceedings of the
[28] Znojil, M., Scattering theory with localized non-Hermiticities, Physical Review D: Particles, Fields, Gravitation and Cosmology, 78, 2, (2008)
[29] Stone, M. H., On One-Parameter Unitary Groups in Hilbert Space, Annals of Mathematics. Annals of Mathematics, 2nd, 33, 643-648, (1932) · JFM 58.0424.01
[30] Flügge, S., Practical Quantum Mechanics II, (1971), Berlin: Springer, Berlin · Zbl 1400.81003
[31] Mostafazadeh, A., Metric operator in pseudo-Hermitian quantum mechanics and the imaginary cubic potential, Journal of Physics A: Mathematical and General, 39, 32, 10171-10188, (2006) · Zbl 1117.81061 · doi:10.1088/0305-4470/39/32/S18
[32] Znojil, M., Bound states emerging from below the continuum in a solvable PT-symmetric discrete Schrödinger equation, Physical Review A: Atomic, Molecular and Optical, 96, (2017)
[33] Kato, T., Perturbation Theory for Linear Operators. Perturbation Theory for Linear Operators, Grundlehren der Mathematischen Wissenschaften, 132, (1966), New York, NY, USA: Springer, New York, NY, USA · Zbl 0148.12601
[34] Günther, U.; Samsonov, B. F., Naimark-dilated PT-symmetric brachistochrone, Physical Review Letters, 101, 23, (2008)
[35] Znojil, M., Quantum Big Bang without fine-tuning in a toy-model, Journal of Physics: Conference Series, 343, (2012)
[36] M. Znojil; F. Bagarello; R. Passante; C. Trapani, Quantization of big bang in crypto-hermitian heisenberg picture, Non-Hermitian Hamiltonians in Quantum Physics, 383-399, (2016), Springer · Zbl 1402.83125
[37] Znojil, M., Non-Hermitian interaction representation and its use in relativistic quantum mechanics, Annals of Physics, 385, 162-179, (2017) · Zbl 1372.81063 · doi:10.1016/j.aop.2017.08.009
[38] Znojil, M.; Semorádová, I.; RůŽička, F.; Moulla, H.; Leghrib, I., Problem of the coexistence of several non-Hermitian observables in PT -symmetric quantum mechanics, Physical Review A: Atomic, Molecular and Optical Physics, 95, 4, (2017) · doi:10.1103/PhysRevA.95.042122
[39] Smilga, A. V., Cryptogauge symmetry and cryptoghosts for crypto-Hermitian HAMiltonians, Journal of Physics A: Mathematical and General, 41, 24, (2008) · Zbl 1139.81030
[40] Antoine, J.-P.; Trapani, C., Metric Operators, Generalized Hermiticity and Lattices of Hilbert Spaces, Non-Selfadjoint Operators in Quantum Physics, 345-402, (2015), Hoboken: John Wiley & Sons, Hoboken · Zbl 1350.81007
[41] Mostafazadeh, A., Quantum mechanics of Klein-Gordon-type fields and quantum cosmology, Annals of Physics, 309, 1, 1-48, (2004) · Zbl 1038.83012 · doi:10.1016/j.aop.2003.08.010
[42] Jakubský, V.; Smejkal, J., A positive-definite scalar product for free Proca particle, Czechoslovak Journal of Physics, 56, 9, 985-997, (2006) · Zbl 1117.81045 · doi:10.1007/s10582-006-0394-x
[43] Caliceti, E.; Graffi, S.; Maioli, M., Perturbation theory of odd anharmonic oscillators, Communications in Mathematical Physics, 75, 1, 51-66, (1980) · Zbl 0446.47044 · doi:10.1007/BF01962591
[44] Alvarez, G., Bender-Wu branch points in the cubic oscillator, Journal of Physics A: Mathematical and General, 27, 4589-4598, (1995) · Zbl 0867.34068
[45] Bessis, D., private communication
[46] Alvarez, G., private communication
[47] Siegl, P.; Krejčiřík, D., On the metric operator for the imaginary cubic oscillator, Physical Review D, 86, (2012)
[48] Znojil, M., Topology-controlled spectra of imaginary cubic oscillators in the large- approach, Physics Letters A, 374, 807-812, (2010) · Zbl 1235.81076
[49] Znojil, M., PT- symmetric harmonic oscillators, Physics Letters A, 259, 3-4, 220-223, (1999) · Zbl 0948.81535 · doi:10.1016/S0375-9601(99)00429-6
[50] Lévai, G.; Znojil, M., Systematic search for PT symmetric potentials with real energy spectra, Journal of Physics A: Mathematical and General, 33, 40, 7165-7180, (2000) · Zbl 0963.81012 · doi:10.1088/0305-4470/33/40/313
[51] Znojil, M., PT-symmetric square well, Phys. Lett. A, 285, 1-2, 7-10, (2001) · Zbl 0969.81521 · doi:10.1016/S0375-9601(01)00301-2
[52] Znojil, M.; Lévai, G., Spontaneous breakdown of PT symmetry in the solvable square-well model, Modern Physics Letters A, 16, 35, 2273-2280, (2001) · Zbl 1138.81404 · doi:10.1142/S0217732301005722
[53] Bagchi, B. K., Supersymmetry in Quantum And Classical Mechanics, (2000), Chapman & Hall/CRC
[54] Znojil, M., Non-Hermitian SUSY and singular, PT-symmetrized oscillators, Journal of Physics A: Mathematical and General, 35, 9, 2341-2352, (2002) · Zbl 1026.81018
[55] Znojil, M., Maximal couplings in PT-symmetric chain models with the real spectrum of energies, Journal of Physics A: Mathematical and Theoretical, 40, 4863-4875, (2007) · Zbl 1115.81030
[56] Znojil, M., Tridiagonal PT-symmetric N-by-N Hamiltonians and a fine-tuning of their observability domains in the strongly non-Hermitian regime, Journal of Physics A: Mathematical and Theoretical, 40, 13131-13148, (2007) · Zbl 1126.81028
[57] Znojil, M., Quantum catastrophes: a case study, Journal of Physics A: Mathematical and Theoretical, 45, (2012) · Zbl 1263.81184
[58] Brody, D. C.; Hughston, L. P., Geometric quantum mechanics, Journal of Geometry and Physics, 38, 1, 19-53, (2001) · Zbl 1067.81081 · doi:10.1016/S0393-0440(00)00052-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.