×

Weak belief and permissibility. (English) Zbl 1437.91092

Summary: We provide epistemic foundations for permissibility [A. Brandenburger, “Lexicographic probabilities and iterated admissibility”, in: Economic analysis of markets and games. Cambridge, MA: MIT Press. 282–290 (1992)], a strategic-form solution concept for finite games which coincides with the Dekel-Fudenberg procedure, i.e., the elimination of all weakly dominated strategies, followed by the iterated elimination of strictly dominated strategies. We show that permissibility characterizes the behavioral implications of “cautious rationality and common weak belief of cautious rationality” in the canonical, universal type structure for lexicographic beliefs. For arbitrary type structures, we show that the behavioral implications of these epistemic assumptions are characterized by the solution concept of full weak best response set, a weak dominance analogue of best response set [D. G. Pearce, Econometrica 52, 1029–1050 (1984; Zbl 0552.90097)].

MSC:

91A26 Rationality and learning in game theory

Citations:

Zbl 0552.90097
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Asheim, G.; Dufwenberg, M., Admissibility and common belief, Games Econ. Behav., 42, 208-234 (2003) · Zbl 1052.91007
[2] Barelli, P.; Galanis, S., Admissibility and event-rationality, Games Econ. Behav., 77, 21-40 (2013) · Zbl 1274.91079
[3] Battigalli, P.; Dufwenberg, M., Psychological Game Theory (2019), Bocconi University, IGIER Working Paper 646
[4] Battigalli, P.; Friedenberg, A., Context-Dependent Forward Induction Reasoning (2012), Bocconi University, IGIER Working Paper 351 · Zbl 1235.91025
[5] Battigalli, P.; Siniscalchi, M., Hierarchies of conditional beliefs and interactive epistemology in dynamic games, J. Econ. Theory, 88, 188-230 (1999) · Zbl 0972.91020
[6] Ben-Porath, E., Rationality, Nash equilibrium, and backward induction in perfect information games, Rev. Econ. Stud., 64, 23-46 (1997) · Zbl 0890.90184
[7] Blume, L.; Brandenburger, A.; Dekel, E., Lexicographic probabilities and choice under uncertainty, Econometrica, 59, 61-79 (1991) · Zbl 0732.90005
[8] Blume, L.; Brandenburger, A.; Dekel, E., Lexicographic probabilities and equilibrium refinements, Econometrica, 59, 81-98 (1991) · Zbl 0729.90096
[9] Brandenburger, A., Lexicographic probabilities and iterated admissibility, (Dasgupta, P.; Gale, D.; Hart, O.; Maskin, E., Economic Analysis of Markets and Games (1992), MIT Press: MIT Press Cambridge MA), 282-290
[10] Brandenburger, A.; Dekel, E., Hierarchies of beliefs and common knowledge, J. Econ. Theory, 59, 189-198 (1993) · Zbl 0773.90109
[11] Brandenburger, A.; Friedenberg, A.; Keisler, H. J., Admissibility in games, Econometrica, 76, 307-352 (2008) · Zbl 1133.91330
[12] Brandenburger, A.; Friedenberg, A.; Keisler, H. J., Fixed points in epistemic game theory, (Proceedings of the 2008 Clifford Lectures. Proceedings of the 2008 Clifford Lectures, AMS Proceedings of Symposia in Applied Mathematics (2012)) · Zbl 1264.91013
[13] Börgers, T., Weak dominance and approximate common knowledge, J. Econ. Theory, 64, 265-276 (1994) · Zbl 0822.90141
[14] Catonini, E.; De Vito, N., Hierarchies of Lexicographic Beliefs (2016), Working Paper
[15] Catonini, E.; De Vito, N., Cautious Belief and Iterated Admissibility (2018), Working Paper
[16] Dekel, E.; Fudenberg, D., Rational behavior with payoff uncertainty, J. Econ. Theory, 52, 243-267 (1990) · Zbl 0721.90084
[17] Dekel, E.; Siniscalchi, M., Epistemic game theory, (Young, P.; Zamir, S., Handbook of Game Theory with Economic Applications, vol. 4 (2015), North-Holland: North-Holland Amsterdam), 619-702
[18] Dekel, E.; Friedenberg, A.; Siniscalchi, M., Lexicographic beliefs and assumption, J. Econ. Theory, 163, 955-985 (2016) · Zbl 1369.91026
[19] Friedenberg, A., When do type structures contain all hierarchies of beliefs?, Games Econ. Behav., 68, 108-129 (2010) · Zbl 1197.91055
[20] Friedenberg, A.; Keisler, H. J., Iterated Dominance Revisited (2011), Working Paper · Zbl 1479.91054
[21] Halpern, J. Y., Lexicographic probability, conditional probability, and nonstandard probability, Games Econ. Behav., 68, 155-179 (2010) · Zbl 1208.60005
[22] Heifetz, A.; Samet, D., Topology-free typology of beliefs, J. Econ. Theory, 82, 324-341 (1998) · Zbl 0921.90156
[23] Heifetz, A.; Meier, M.; Schipper, B., Comprehensive rationalizability, Games Econ. Behav., 116, 185-202 (2019) · Zbl 1417.91122
[24] Hu, T., On p-rationalizability and approximate common certainty of rationality, J. Econ. Theory, 136, 379-391 (2007) · Zbl 1281.91034
[25] Kechris, A., Classical Descriptive Set Theory (1995), Springer Verlag: Springer Verlag Berlin · Zbl 0819.04002
[26] Keisler, H. J.; Lee, B. S., Common Assumption of Rationality (2015), University of Toronto, Working Paper
[27] Lo, K. C., Nash equilibrium without mutual knowledge of rationality, Econ. Theory, 14, 621-633 (1999) · Zbl 0952.91006
[28] Mertens, J. F.; Zamir, S., Formulation of Bayesian analysis for games with incomplete information, Int. J. Game Theory, 14, 1-29 (1985) · Zbl 0567.90103
[29] Morris, S., Alternative notions of belief, (Bacharach, M.; Gérard-Varet, L. A.; Mongin, P.; Shin, H., Epistemic Logic and the Theory of Games and Decisions (1997), Kluwer: Kluwer Dordrecht), 217-233 · Zbl 0956.03018
[30] Pearce, D., Rationalizable strategic behavior and the problem of perfection, Econometrica, 52, 1029-1050 (1984) · Zbl 0552.90097
[31] Perea, A., Epistemic Game Theory: Reasoning and Choice (2012), CUP Press
[32] Samuelson, L., Dominated strategies and common knowledge, Games Econ. Behav., 4, 284-313 (1992) · Zbl 0749.90092
[33] Savage, L., The Foundations of Statistics (1972), Wiley: Wiley New York · Zbl 0276.62006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.