×

The Fréchet functional equation for Lie groups. (English) Zbl 1464.39021

Summary: In this paper, we investigate the solutions of Fréchet’s functional equation in the context of Lie groups. In particular, we give the explicit right-abelian solutions of this equation for connected Lie groups. We also extend this result to homogeneous spaces and deal with some classical examples.

MSC:

39B52 Functional equations for functions with more general domains and/or ranges
22E30 Analysis on real and complex Lie groups
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Almira, JM, Characterization of polynomials as solutions of certain functional equations, J. Math. Anal. Appl., 459, 1016-1028 (2018) · Zbl 1379.39013 · doi:10.1016/j.jmaa.2017.11.036
[2] Almira, JM; López-Moreno, AJ, On solutions of the Fréchet functional equation, J. Math. Anal. Appl., 332, 1119-1133 (2007) · Zbl 1118.39008 · doi:10.1016/j.jmaa.2006.11.002
[3] Almira, JM; Shulman, EV, On polynomial functions on non-commutative groups, J. Math. Anal. Appl., 458, 875-888 (2018) · Zbl 1382.22003 · doi:10.1016/j.jmaa.2017.09.020
[4] Almira, JM; Székelyhidi, L., Characterization of classes of polynomial functions, Mediterr. J. Math., 13, 301-307 (2016) · Zbl 1336.43006 · doi:10.1007/s00009-014-0463-5
[5] Boole, G., Moulton, J.F.: A Treatise on the Calculus of Finite Differences, 2nd edn. Dover (1960) · Zbl 0090.29701
[6] Djoković, D.Ž.: A representation theorem for \((x_1-1)(x_2-1)...(x_n-1)\) and its applications. Ann. Polon. Math. 22, 189-198 (1969) · Zbl 0187.39903
[7] Fréchet, M., Une définition fonctionnelle des polynômes, Nouv. Ann., 9, 145-162 (1909) · JFM 40.0389.02
[8] Fréchet, M., Les polynômes abstraits, J. Math. Pures Appl., 9, 8, 71-92 (1929) · JFM 55.0242.03
[9] Hamel, G., Einer Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung \(f(x+y)= f(x) +f(y)\), Math. Ann., 60, 459-472 (1905) · JFM 36.0446.04 · doi:10.1007/BF01457624
[10] Jordan, C.: Calculus of Finite Differences, 3rd edn. AMS Chelsea Publishing (1965) · Zbl 0154.33901
[11] Koh, EL, The Cauchy functional equation in distribution, Proc. Am. Math. Soc., 106, 641-646 (1989) · Zbl 0687.46025 · doi:10.1090/S0002-9939-1989-0942634-7
[12] Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities, 2nd edn. Birkhäuser (2009) · Zbl 1221.39041
[13] Leibman, A., Polynomial mappings of groups, Israel J. Math., 129, 29-60 (2002) · Zbl 1007.20035 · doi:10.1007/BF02773152
[14] Millsaps, K., Abstract polynomials in non-abelian groups, Bull. Am. Math. Soc., 49, 253-257 (1943) · Zbl 0063.03988 · doi:10.1090/S0002-9904-1943-07891-3
[15] Molla, A.; Nicolay, S.; Schneiders, J-P, On some generalisations of the Fréchet functional equations, J. Math. Anal. Appl., 466, 1400-1409 (2018) · Zbl 1393.39015 · doi:10.1016/j.jmaa.2018.06.058
[16] Popa, D.; Raşa, I., The Fréchet functional equation with application to the stability of certain operators, J. Approx. Theory, 164, 138-144 (2012) · Zbl 1238.39008 · doi:10.1016/j.jat.2011.09.009
[17] Prager, W.; Schwaiger, J., Generalized polynomials in one and in several variables, Math. Pannon., 20, 189-208 (2009) · Zbl 1224.39038
[18] Shulman, EV, Each semipolynomial on a group is a polynomial, J. Math. Anal. Appl., 479, 765-772 (2019) · Zbl 1442.12004 · doi:10.1016/j.jmaa.2019.06.050
[19] Stetkær, H., Functional Equations on Groups (2013), Singapore: World Scientific, Singapore · Zbl 1298.39018 · doi:10.1142/8830
[20] Stetkær, H., Kannappan’s functional equation on semigroups with involution, Semigroup Forum, 94, 17-30 (2017) · Zbl 1370.39012 · doi:10.1007/s00233-015-9756-7
[21] Székelyhidi, L., Fréchet’s equation and Hyers theorem on noncommutative semigroups, Ann. Polon. Math., 48, 183-189 (1988) · Zbl 0656.39005 · doi:10.4064/ap-48-2-183-189
[22] Van der Lijn, G., La définition fonctionnelle des polynômes dans les groupes abéliens, Fund. Math., 33, 42-50 (1939) · JFM 65.1124.03 · doi:10.4064/fm-33-1-42-50
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.