×

NumExp: numerical epsilon expansion of hypergeometric functions. (English) Zbl 1344.33001

Summary: It is demonstrated that the well-regularized hypergeometric functions can be evaluated directly and numerically. The package NumExp is presented for expanding hypergeometric functions and/or other transcendental functions in a small regularization parameter. The hypergeometric function is expressed as a Laurent series in the regularization parameter and the coefficients are evaluated numerically by using the multi-precision finite difference method. This elaborate expansion method works for a wide variety of hypergeometric functions, which are needed in the context of dimensional regularization for loop integrals. The divergent and finite parts can be extracted from the final result easily and simultaneously. In addition, there is almost no restriction on the parameters of hypergeometric functions.

MSC:

33-04 Software, source code, etc. for problems pertaining to special functions
81-04 Software, source code, etc. for problems pertaining to quantum theory
81T18 Feynman diagrams
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Boos, E.; Davydychev, A. I., A method of evaluating massive Feynman integrals, Theor. Math. Phys., 89, 1052 (1991) · Zbl 0729.58054
[2] Davydychev, A. I., General results for massive \(N\) point Feynman diagrams with different masses, J. Math. Phys., 33, 358 (1992)
[3] Davydychev, A. I.; Tausk, J., Two loop selfenergy diagrams with different masses and the momentum expansion, Nuclear Phys. B, 397, 123 (1993)
[4] Davydychev, A. I.; Kalmykov, M. Y., New results for the epsilon expansion of certain one, two and three loop Feynman diagrams, Nuclear Phys. B, 605, 266 (2001) · Zbl 0969.81598
[5] Tarasov, O., Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D, 54, 6479 (1996) · Zbl 0925.81121
[6] Anastasiou, C.; Glover, E. W.N.; Oleari, C., Application of the negative-dimension approach to massless scalar box integrals, Nuclear Phys. B, 565, 445 (2000) · Zbl 0956.81053
[7] Anastasiou, C.; Glover, E. W.N.; Oleari, C., Scalar one-loop integrals using the negative-dimension approach, Nuclear Phys. B, 572, 307 (2000) · Zbl 0956.81053
[8] Anastasiou, C.; Glover, E. W.N.; Oleari, C., The two-loop scalar and tensor pentabox graph with light-like legs, Nuclear Phys. B, 575, 416 (2000) · Zbl 1056.81536
[9] Gehrmann, T.; Remiddi, E., Differential equations for two loop four point functions, Nuclear Phys. B, 580, 485 (2000) · Zbl 1071.81089
[10] Fleischer, J.; Jegerlehner, F.; Tarasov, O., A new hypergeometric representation of one loop scalar integrals in \(d\) dimensions, Nuclear Phys. B, 672, 303 (2003) · Zbl 1058.81605
[11] Weinzierl, S., Subtraction terms at NNLO, J. High Energy Phys., 0303, 062 (2003)
[12] Del Duca, V.; Duhr, C.; Nigel Glover, E.; Smirnov, V. A., The one-loop pentagon to higher orders in epsilon, J. High Energy Phys., 1001, 042 (2010) · Zbl 1269.81195
[13] Smirnov, V. A., Analytical result for dimensionally regularized massless on shell double box, Phys. Lett. B, 460, 397 (1999)
[14] Tausk, J., Nonplanar massless two loop Feynman diagrams with four on-shell legs, Phys. Lett. B, 469, 225 (1999) · Zbl 0987.81500
[15] Kalmykov, M. Y.; Kniehl, B. A., Mellin-Barnes representations of Feynman diagrams, linear systems of differential equations, and polynomial solutions, Phys. Lett. B, 714, 103 (2012)
[16] Suzuki, A. T.; Schmidt, A. G.M., Two-loop self-energy diagrams worked out with NDIM, Eur. Phys. J. C, 5, 175 (1998)
[17] Suzuki, A. T.; Schmidt, A. G.M., Negative-dimensional integration revisited, J. Phys. A, 31, 8023 (1998) · Zbl 0954.81055
[18] Gonzalez, I.; Schmidt, I., Optimized negative dimensional integration method (NDIM) and multiloop Feynman diagram calculation, Nuclear Phys. B, 769, 124 (2007) · Zbl 1117.81138
[19] Gonzalez, I.; Moll, V. H., Definite integrals by the method of brackets. Part 1
[20] Gonzalez, I.; Moll, V.; Schmidt, I., A generalized Ramanujan master theorem applied to the evaluation of Feynman diagrams
[21] Gonzalez, I.; Moll, V. H.; Straub, A., The method of brackets. Part 2. Examples and applications
[22] Kotikov, A., Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett. B, 254, 158 (1991) · Zbl 1020.81734
[23] Tarasov, O., Hypergeometric representation of the two-loop equal mass sunrise diagram, Phys. Lett. B, 638, 195 (2006) · Zbl 1248.81136
[24] Lee, R. N., Space-time dimensionality \(D\) as complex variable: calculating loop integrals using dimensional recurrence relation and analytical properties with respect to \(D\), Nuclear Phys. B, 830, 474 (2010) · Zbl 1203.83051
[25] Kniehl, B. A.; Tarasov, O. V., Analytic result for the one-loop scalar pentagon integral with massless propagators, Nuclear Phys. B, 833, 298 (2010) · Zbl 1204.81075
[26] ’t Hooft, G.; Veltman, M. J.G., Scalar one loop integrals, Nuclear Phys. B, 153, 365 (1979)
[27] Kalmykov, M. Y.; Veretin, O., Single scale diagrams and multiple binomial sums, Phys. Lett. B, 483, 315 (2000) · Zbl 1031.81568
[28] Jegerlehner, F.; Kalmykov, M. Y.; Veretin, O., MS-bar versus pole masses of gauge bosons. 2. Two loop electroweak fermion corrections, Nuclear Phys. B, 658, 49 (2003) · Zbl 1097.81929
[29] Jegerlehner, F.; Kalmykov, M. Y., O(alpha alpha(s)) correction to the pole mass of the \(t\) quark within the standard model, Nuclear Phys. B, 676, 365 (2004)
[30] Davydychev, A. I.; Kalmykov, M. Y., Massive Feynman diagrams and inverse binomial sums, Nuclear Phys. B, 699, 3 (2004) · Zbl 1123.81388
[31] Weinzierl, S., Expansion around half integer values, binomial sums and inverse binomial sums, J. Math. Phys., 45, 2656 (2004) · Zbl 1071.33018
[32] Kalmykov, M. Y.; Ward, B. F.L.; Yost, S., All order epsilon-expansion of Gauss hypergeometric functions with integer and half/integer values of parameters, J. High Energy Phys., 02, 040 (2007)
[33] Kalmykov, M. Y., Gauss hypergeometric function: reduction, epsilon-expansion for integer/half-integer parameters and Feynman diagrams, J. High Energy Phys., 04, 056 (2006)
[34] Kalmykov, M. Y.; Ward, B. F.L.; Yost, S. A., Multiple (inverse) binomial sums of arbitrary weight and depth and the all-order epsilon-expansion of generalized hypergeometric functions with one half-integer value of parameter, J. High Energy Phys., 10, 048 (2007)
[35] Kalmykov, M. Y.; Kniehl, B. A., Towards all-order Laurent expansion of generalized hypergeometric functions around rational values of parameters, Nuclear Phys. B, 809, 365 (2009) · Zbl 1192.81351
[36] Moch, S.; Uwer, P.; Weinzierl, S., Nested sums, expansion of transcendental functions and multi-scale multi-loop integrals, J. Math. Phys., 43, 3363 (2002) · Zbl 1060.33007
[37] Weinzierl, S., Symbolic expansion of transcendental functions, Comput. Phys. Comm., 145, 357 (2002) · Zbl 1001.65025
[38] Moch, S.; Uwer, P., XSummer: transcendental functions and symbolic summation in form, Comput. Phys. Comm., 174, 759 (2006) · Zbl 1196.68332
[39] Huber, T.; Maitre, D., HypExp, a mathematica package for expanding hypergeometric functions around integer-valued parameters, Comput. Phys. Comm., 175, 122 (2006) · Zbl 1196.68326
[40] Huber, T.; Maitre, D., HypExp 2, expanding hypergeometric functions about half-integer parameters, Comput. Phys. Comm., 178, 755 (2008) · Zbl 1196.81024
[41] Kalmykov, M. Y.; Ward, B. F.L.; Yost, S. A., On the all-order epsilon-expansion of generalized hypergeometric functions with integer values of parameters, J. High Energy Phys., 11, 009 (2007) · Zbl 1245.33007
[42] Bytev, V. V.; Kalmykov, M. Y.; Kniehl, B. A., HYPERDIRE: HYPERgeometric functions DIfferential REduction MATHEMATICA based packages for differential reduction of generalized hypergeometric functions: now with \({}_p F_{p - 1}, F_1, F_2, F_3, F_4\)
[43] Vermaseren, J., Harmonic sums, Mellin transforms and integrals, Internat. J. Modern Phys. A, 14, 2037 (1999) · Zbl 0939.65032
[44] Remiddi, E.; Vermaseren, J. A.M., Harmonic polylogarithms, Internat. J. Modern Phys. A, 15, 725 (2000) · Zbl 0951.33003
[45] Gehrmann, T.; Remiddi, E., Numerical evaluation of harmonic polylogarithms, Comput. Phys. Comm., 141, 296 (2001) · Zbl 0991.65022
[46] Gehrmann, T.; Remiddi, E., Numerical evaluation of two-dimensional harmonic polylogarithms, Comput. Phys. Comm., 144, 200 (2002) · Zbl 1001.65020
[47] Vollinga, J.; Weinzierl, S., Numerical evaluation of multiple polylogarithms, Comput. Phys. Comm., 167, 177 (2005) · Zbl 1196.65045
[48] Maitre, D., HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Comm., 174, 222 (2006) · Zbl 1196.68330
[49] Maitre, D., Extension of HPL to complex arguments, Comput. Phys. Comm., 183, 846 (2012)
[50] Bonciani, R.; Degrassi, G.; Vicini, A., On the generalized harmonic polylogarithms of one complex variable, Comput. Phys. Comm., 182, 1253 (2011) · Zbl 1262.65035
[51] Buehler, S.; Duhr, C., CHAPLIN—complex harmonic polylogarithms in fortran · Zbl 1360.33002
[52] Fornberg, B., Generation of finite difference formulas on arbitrarily spaced grids, Math. Comp., 51, 699 (1988) · Zbl 0701.65014
[54] Huang, Z.-W.; Liu, J., Analytic calculation of doubly heavy hadron spectral density in coordinate space
[55] Shpot, M., A massive Feynman integral and some reduction relations for Appell functions, J. Math. Phys., 48, 123512 (2007) · Zbl 1153.81433
[56] Kniehl, B. A.; Tarasov, O. V., Finding new relationships between hypergeometric functions by evaluating Feynman integrals, Nuclear Phys. B, 854, 841 (2012) · Zbl 1229.81100
[57] Carter, J.; Heinrich, G., SecDec: a general program for sector decomposition, Comput. Phys. Comm., 182, 1566 (2011) · Zbl 1262.81119
[58] Alkofer, R.; Huber, M. Q.; Schwenzer, K., Infrared behavior of three-point functions in Landau Gauge Yang-Mills theory, Eur. Phys. J. C, 62, 761 (2009) · Zbl 1189.81141
[59] Colavecchia, F.; Gasaneo, G.; Miraglia, J., Numerical evaluation of Appell’s \(F_1\) hypergeometric function, Comput. Phys. Comm., 138, 29 (2001) · Zbl 0984.65017
[60] Colavecchia, F.; Gasaneo, G., \(f 1\): a code to compute Appell’s \(F_1\) hypergeometric function, Comput. Phys. Comm., 157, 32 (2004) · Zbl 1196.33019
[61] Zhang, J.-R.; Huang, M.-Q., \(\{Q \overline{q} \} \{\overline{Q}^{({}^\prime)} q \}\) molecular states, Phys. Rev. D, 80, 056004 (2009)
[62] Bühring, W., An analytic continuation of the hypergeometric series, SIMA J. Math. Anal., 18, 884-889 (1988) · Zbl 0614.33005
[63] Michel, N.; Stoitsov, M., Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Poschl-Teller-Ginocchio potential wave functions, Comput. Phys. Comm., 178, 535-551 (2007) · Zbl 1196.33020
[64] Bühring, W., Generalized hypergeometric functions at unit argument, Proc. Amer. Math. Soc., 114, 145 (1992) · Zbl 0754.33003
[66] Bühring, W., Partial sums of hypergeometric series of unit argument, Proc. Amer. Math. Soc., 132, 407 (2004) · Zbl 1041.33006
[67] Skorokhodov, S., A method for computing the generalized hypergeometric function \({}_p F_{p - 1}(a_1, \ldots, a_p; b_1, \ldots, b_{p - 1}; 1)\) in terms of the Riemann zeta function, Comput. Math. Math. Phys., 45, 550 (2005) · Zbl 1077.33008
[68] Bogolubsky, A. I.; Skorokhodov, S. L., Fast evaluation of the hypergeometric function \({}_p F_{p - 1}(a; b; z)\) at the singular point \(z = 1\) by means of the Hurwitz zeta function \(\zeta(\alpha, s)\), Program. Comput. Softw., 32, 145 (2006) · Zbl 1102.33014
[69] Willis, J. L., Acceleration of generalized hypergeometric functions through precise remainder asymptotics, Numer. Algorithms, 59, 447 (2012) · Zbl 1236.65019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.