zbMATH — the first resource for mathematics

Stationary solutions of quasi-linear Schrödinger-Poisson systems. (English) Zbl 0909.35133
Summary: We show that a high-field version of the periodic Schrödinger-Poisson system including nonlinear terms in the Poisson equation (corresponding to a field-dependent dielectric constant) and effective potentials in the Schrödinger equation has an infinite number of different stationary states which correspond to solution of a nonlinear Schrödinger-Poisson eigenvalue problem. \(\copyright\) Academic Press.

35Q60 PDEs in connection with optics and electromagnetic theory
78A35 Motion of charged particles
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
Full Text: DOI
[1] Vinter, B., Subbands and charge control in a two-dimensional electron gas field-effect transistor, Appl. phys. lett., 44, 307-309, (1984)
[2] Wulf, U., Electron states inn, Phys. rev. B, 35, 9754-9757, (1987)
[3] Kerkhoven, J.; Galick, A.T.; Ravaioli, U.; Arends, J.H.; Saad, Y., Efficient numerical simulation of electron states in quantum wires, J. appl. phys., 68, 3461-3469, (1990)
[4] Goldrikian, B.; Sherwin, M.; Birnir, B., Self-consistent Floquet states for periodically driven quantum wells, Phys. rev. B, 49, 744-749, (1994)
[5] Haus, H.A., Waves and fields in optoelectronics, (1984), Prentice-Hall Englewood Cliffs
[6] Brezzi, F.; Markowich, P., The three-dimensional wigner – poisson problem: existence, uniqueness and approximation, Math. methods appl. sci., 14, 35-62, (1991) · Zbl 0739.35080
[7] Illner, R.; Lange, H.; Zweifel, P.F., Global existence, uniqueness and asymptotic behavior of solutions of the wigner – poisson and schrödiger – poisson systems, Math. methods appl. sci., 17, 349-376, (1994) · Zbl 0808.35116
[8] Lange, H.; Zweifel, P.F., Periodic solutions to the wigner – poisson equation, Nonlinear anal., 26, 551-563, (1996) · Zbl 0848.35106
[9] Lange, H.; Zweifel, P.F., Dissipation in wigner – poisson systems, J. math. phys., 35, 1513-1521, (1994) · Zbl 0803.35116
[10] Lange, H.; Toomire, B.; Zweifel, P.F., Time-dependent dissipation in nonlinear Schrödinger systems, J. math. phys., 36, 1274-1283, (1995) · Zbl 0823.35159
[11] G. Albinus, H.-C. Kaiser, J. Rehberg, On stationary Schrödinger-Poisson equations, Inst. Angew. Analysis and Stockastik, Berlin, 1993
[12] Nier, F., A stationary schrödinger – poisson system arising from the modelling of electronic devices, Forum math., 2, 489-510, (1990) · Zbl 0716.34098
[13] F. Nier, A variation formulation of Schrödinger-Poisson systems in dimensionsd, CMAP Ecole Polytechnique, Palaiseau, 1992
[14] F. Nier, Schrödinger-Poisson systems in dimensiond, Paris Univ. CAM, 1992
[15] Lange, H.; Toomire, B.; Zweifel, P.F., On the schrödinger – poisson eigenmatrix problem, J. math. anal. appl., 203, 289-302, (1996) · Zbl 0893.35120
[16] Lange, H.; Kavian, O.; Zweifel, P.F., Periodic and stationary solutions to the schrödinger – poisson and wigner – poisson systems, Z. angew. math. mech., 74, 606-608, (1994) · Zbl 0820.35107
[17] Bohun, S.; Lange, H.; Illner, R.; Zweifel, P.F., Error estimates for galerki approximations to the periodic schrödinger – poisson system, Z. angew. math. mech., 76, 7-13, (1996) · Zbl 0864.65062
[18] Lange, H.; Toomire, B.; Zweifel, P.F., A survey of wigner – poisson problems, Operator theory: advances and applications, (1994), Birkhäuser Basel, p. 239-256 · Zbl 0826.35104
[19] Lange, H.; Toomire, B.; Zweifel, P.F., An overview of schrödinger – poisson problems, Rep. math. phys., 36, 331-345, (1995) · Zbl 0882.65121
[20] Zweifel, P.F., The poisson – wigner system: A quantum transport equation, Rep. math. phys., 32, 317-323, (1993) · Zbl 0811.35114
[21] Akhmediev, N.; Ankiewicz, A.; Soto-Crespo, J.M., Does the nonlinear Schrödinger equation correctly describe beam propagation?, Opt. lett., 18, 411-413, (1993)
[22] Illner, R.; Lange, H.; Toomire, B.; Zweifel, P.F., On quasi-linear schrödinger – poisson systems, Math. methods appl. sci., 20, 1223-1238, (1997) · Zbl 0886.35125
[23] Lange, H.; Toomire, B.; Zweifel, P.F., A note on conservation laws, Transport theory statist. physics, 23, 731-736, (1994) · Zbl 0813.35109
[24] Raimes, S., The wave mechanics of electrons in metals, (1967), NHPC London
[25] Struwz, M., Variational methods, (1990), Springer-Verlag Berlin
[26] Kavian, O., Introduction à la théorie des points critiques, (1994), Springer-Verlag Berlin
[27] Floer, A.; Weinstein, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. funct. anal., 69, 397-408, (1986) · Zbl 0613.35076
[28] Oh, Yong-Guen, Stability of semiclassical bound states of nonlinear Schrödinger equations with potentials, Commun. math. phys., 121, 11-33, (1989) · Zbl 0693.35132
[29] Oh, Yong-Guen, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Comm. math. phys., 131, 223-253, (1990) · Zbl 0753.35097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.