×

Coreline criteria for inertial particle motion. (English) Zbl 07483379

Hotz, Ingrid (ed.) et al., Topological methods in data analysis and visualization VI. Theory, applications, and software. Selected papers based on the presentations at the 8th TopoInVis workshop, Nyköping, Sweden, June 2019. Cham: Springer. Math. Vis., 133-157 (2021).
Summary: Dynamical systems, such as the second-order ODEs that govern the motion of finite-sized objects in fluids, describe the evolution of a state by a trajectory living in a high-dimensional phase space. The high dimensionality leads to visualization challenges and, for the case of inertial particles, multiple models exist that pose different assumptions. In this paper, we thoroughly address the extraction of a specific feature, namely the vortex corelines of inertial particles. Based on a general template model that comprises two of the most commonly used inertial particle ODEs, we first transform their high-dimensional tangent vector field into a Galilean reference frame in which the observed inertial particle flow becomes as steady as possible. In the optimal frame, we derive first-order and second-order vortex coreline criteria, allowing us to extract straight and bent inertial vortex corelines using 3D and 6D parallel vectors operators, respectively. With this, we generalize existing work in multiple ways: not only do we handle two inertial particle models at once, we extend the concept of second-order vortex corelines to the inertial case and make them Galilean-invariant by deriving the criteria from a steady reference frame, rather than from a geometric characterization.
For the entire collection see [Zbl 1471.68018].

MSC:

68-XX Computer science
55-08 Computational methods for problems pertaining to algebraic topology
55N31 Persistent homology and applications, topological data analysis
68T09 Computational aspects of data analysis and big data
68U03 Computational aspects of digital topology
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
68U10 Computing methodologies for image processing
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Syal, M., Govindarajan, B., Leishman, J.G.: Mesoscale sediment tracking methodology to analyze brownout cloud developments. In: 66th Annual Forum of Proceedings of the American Helicopter Society (2010)
[2] Sydney, A., Baharani, A., Leishman, J.G.: Understanding brownout using near-wall dual-phase flow measurements. In: 67th Annual Forum of Proceedings of the American Helicopter Society, Virginia Beach, VA, May 2011
[3] Kutz, B.M., Gunther, T., Rumpf, A., Kuhn, A.: Numerical examination of a model rotor in brownout conditions. In: Proceedings of the American Helicopter Society, no. AHS2014-000343 (2014)
[4] Karl, D.M.: A sea of change: biogeochemical variability in the North Pacific Subtropical Gyre. Ecosystems 2(3), 181-214 (1999) · doi:10.1007/s100219900068
[5] Bordas, R.: Optical measurements in disperse two-phase flows: application to rain formation in cumulus clouds. Ph.D. thesis, University of Magdeburg (2011)
[6] Günther, T., Theisel, H.: Objective vortex corelines of finite-sized objects in fluid flows. IEEE Trans. Vis. Comput. Graph. 25(1), 956-966 (2019). (Proceedings of the IEEE Scientific Visualization 2018) · doi:10.1109/TVCG.2018.2864828
[7] Sujudi, D., Haimes, R.: Identification of swirling flow in 3D vector fields. Technical report, Department of Aeronautics and Astronautics, MIT (1995). AIAA paper: 95-1715
[8] Roth, M., Peikert, R.: A higher-order method for finding vortex core lines. In: Proceedings of the IEEE Visualization, pp. 143-150 (1998)
[9] Peikert, R., Roth, M.: The “parallel vectors” operator-a vector field visualization primitive. In: Proceedings of the IEEE Visualization, pp. 263-270 (1999)
[10] Lugt, H.J.: The dilemma of defining a vortex. In: Recent Developments in Theoretical and Experimental Fluid Mechanics, pp. 309-321. Springer (1979)
[11] Robinson, S.K.: Coherent motions in the turbulent boundary layer. Ann. Rev. Fluid Mech. 23(1), 601-639 (1991) · doi:10.1146/annurev.fl.23.010191.003125
[12] Crowe, C., Sommerfield, M., Tsuji, Y.: Multiphase Flows with Droplets and Particles. CRC Press, Boca Raton (1998)
[13] Haller, G., Sapsis, T.: Where do inertial particles go in fluid flows? Physica D 237, 573-583 (2008) · Zbl 1139.76055 · doi:10.1016/j.physd.2007.09.027
[14] Wan, Z.Y., Sapsis, T.P.: Machine learning the kinematics of spherical particles in fluid flows. J. Fluid Mech. 857, R2 (2018). https://doi.org/10.1017/jfm.2018.797 · Zbl 1415.76664
[15] Benzi, R., Biferale, L., Calzavarini, E., Lohse, D., Toschi, F.: Velocity-gradient statistics along particle trajectories in turbulent flows: the refined similarity hypothesis in the Lagrangian frame. Phys. Rev. E 80, 066318 (2009) · doi:10.1103/PhysRevE.80.066318
[16] Cartwright, J.H.E., Feudel, U., Karolyi, G., Moura, A., Piro, O., Tel, T.: Dynamics of finite-size particles in chaotic fluid flows. In: Thiel, M., Kurths, J., Romano, M.C., Károlyi, G., Moura, A. (eds.) Nonlinear Dynamics and Chaos: Advance and Perspectives. Understanding Complex Systems, pp. 51-87. Springer, Heidelberg (2010) · Zbl 1243.37062
[17] Bec, J., Biferale, L., Cencini, M., Lanotte, A.S., Toschi, F.: Spatial and velocity statistics of inertial particles in turbulent flows. J. Phys: Conf. Ser. 333(1), 012003 (2011) · Zbl 1097.76040
[18] Benczik, I.J., Toroczkai, Z., Tel, T.: Selective sensitivity of open chaotic flows on inertial tracer advection: catching particles with a stick. Phys. Rev. Lett. 89, 164501 (2002) · doi:10.1103/PhysRevLett.89.164501
[19] Babiano, A., Cartwright, J.H.E., Piro, O., Provenzale, A.: Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems. Phys. Rev. Lett. 84, 5764-5767 (2000) · doi:10.1103/PhysRevLett.84.5764
[20] Günther, T., Theisel, H.: The state of the art in vortex extraction. Comput. Graph. Forum 37(6), 149-173 (2018) · doi:10.1111/cgf.13319
[21] Globus, A., Levit, C., Lasinski, T.: A tool for visualizing the topology of three dimensional vector fields. In: Proceedings of the IEEE Visualization, pp. 33-40 (1991)
[22] Sahner, J., Weinkauf, T., Hege, H.-C.: Galilean invariant extraction and iconic representation of vortex core lines. In: Proceedings of the Eurographics/IEEE VGTC Symposium on Visualization (EuroVis), pp. 151-160 (2005)
[23] Fuchs, R., Peikert, R., Hauser, H., Sadlo, F., Muigg, P.: Parallel vectors criteria for unsteady flow vortices. IEEE Trans. Vis. Comput. Graph. 14(3), 615-626 (2008) · doi:10.1109/TVCG.2007.70633
[24] Weinkauf, T., Sahner, J., Theisel, H., Hege, H.-C.: Cores of swirling particle motion in unsteady flows. IEEE Trans. Vis. Comput. Graph. 13(6), 1759-1766 (2007). (Proceedings of the Visualization) · doi:10.1109/TVCG.2007.70545
[25] Theisel, H., Seidel, H.-P.: Feature flow fields. In: Proceedings of the Symposium on Data Visualisation, pp. 141-148 (2003)
[26] Günther, T., Gross, M., Theisel, H.: Generic objective vortices for flow visualization. ACM Trans. Graph. 36(4), 141:1-141:11 (2017). (Proceedings of the SIGGRAPH)
[27] Hadwiger, M., Mlejnek, M., Theuÿl, T., Rautek, P.: Time-dependent flow seen through approximate observer killing fields. IEEE Trans. Vis. Comput. Graph. 25(1), 1257-1266 (2019). (Proceedings of IEEE Scientific Visualization 2018) · doi:10.1109/TVCG.2018.2864839
[28] Chong, M.S., Perry, A.E., Cantwell, B.J.: A general classification of three-dimensional flow fields. Phys. Fluids A 2(5), 765-777 (1990) · doi:10.1063/1.857730
[29] Rojo, I.B., Günther, T.: Vector field topology of time-dependent flows in a steady reference frame. IEEE Trans. Vis. Comput. Graph. 26(1), 280-290 (2019). (Proceedings of the IEEE Scientific Visualization 2019)
[30] Günther, T., Theisel, H.: Hyper-objective vortices. IEEE Trans. Vis. Comput. Graph. 26(3), 1532-1547 (2020) · doi:10.1109/TVCG.2018.2868760
[31] Wiebel, A.: Feature detection in vector fields using the Helmholtz-Hodge decomposition. Diploma thesis, University of Kaiserslautern (2004)
[32] Wiebel, A., Garth, C., Scheuermann, G.: Computation of localized flow for steady and unsteady vector fields and its applications. IEEE Trans. Vis. Comput. Graph. 13(4), 641 (2007) · Zbl 1310.76135 · doi:10.1109/TVCG.2007.4293009
[33] Bhatia, H., Pascucci, V., Kirby, R.M., Bremer, P.-T.: Extracting features from time-dependent vector fields using internal reference frames. Comput. Graph. Forum 33(3), 21-30 (2014). (Proceedings of the EuroVis) · doi:10.1111/cgf.12358
[34] Bujack, R., Hlawitschka, M., Joy, K.I.: Topology-inspired Galilean invariant vector field analysis. In: IEEE Pacific Visualization Symposium, pp. 72-79, April 2016
[35] Kim, B., Günther, T.: Robust reference frame extraction from unsteady 2D vector fields with convolutional neural networks. Comput. Graph. Forum 38(3), 285-295 (2019). (Proceedings of the EuroVis) · doi:10.1111/cgf.13689
[36] Günther, T., Gross, M.: Flow-induced inertial steady vector field topology. Comput. Graph. Forum 36(2), 143-152 (2017). (Proceedings of the Eurographics) · doi:10.1111/cgf.13114
[37] Helman, J.L., Hesselink, L.: Representation and display of vector field topology in fluid flow data sets. Computer 22(8), 27-36 (1989) · doi:10.1109/2.35197
[38] Rockwood, A., Heaton, K., Davis, T.: Real-time rendering of trimmed surfaces. In: ACM SIGGRAPH Computer Graphics, vol. 23, pp. 107-116. ACM (1989)
[39] Hoschek, J., Lasser, D.: Fundamentals of computer aided geometric design. AK Peters (1993) · Zbl 0788.68002
[40] Kelley, C.T.: Iterative methods for linear and nonlinear equations. Front. Appl. Math. 16, 575-601 (1995) · Zbl 0832.65046
[41] Van Gelder, A., Pang, A.: Using PVsolve to analyze and locate positions of parallel vectors. IEEE Trans. Vis. Comput. Graph. 15(4), 682-695 (2009) · doi:10.1109/TVCG.2009.11
[42] Hofmann, L., Sadlo, F.: The dependent vectors operator. Comput. Graph. Forum 38(3), 261-272 (2019). https://doi.org/10.1111/cgf.13687. (Proceedings of the EuroVis) · doi:10.1111/cgf.13687
[43] Rojo, B.I., Gross, M., Gunther, T.: Visualizing the phase space of heterogeneous inertial particles in 2D flows. Comput. Graph. Forum 37(3), 289-300 (2018). (Proceedings of the EuroVis) · doi:10.1111/cgf.13420
[44] Popinet, S.: Free computational fluid dynamics. Cluster World 2, 6 (2004)
[45] Camarri, S., Salvetti, M.-V., Buffoni, M., Iollo, A.: Simulation of the three-dimensional flow around a square cylinder between parallel walls at moderate Reynolds numbers. In: XVII Congresso di Meccanica Teorica ed Applicata (2005)
[46] Stalling, D., Westerhoff, M., Hege, H.-C.: Amira: a highly interactive system for visual data analysis. In: The Visualization Handbook, pp. 749-767. Elsevier (2005)
[47] Oster, T., Rossl, C., Theisel, H.: Core lines in 3D second-order tensor fields. Comput. Graph. Forum 37(3), 327-337 (2018). (Proceedings of the EuroVis · doi:10.1111/cgf.13423
[48] Günther, T., Schulze, M., Theisel, H.: Rotation invariant vortices for flow visualization. IEEE Trans. Vis. Comput. Graph. 22(1), 817-826 (2016). (Proceedings of the IEEE SciVis 2015) · doi:10.1109/TVCG.2015.2467200
[49] Vilela, R.D., de Moura, A.P.S., Grebogi, C.: Finite-size effects on open chaotic advection. Phys. Rev. E 73, 026302 (2006) · doi:10.1103/PhysRevE.73.026302
[50] Sudharsan, M., Brunton, S.L., Riley, J.J.: Lagrangian coherent structures and inertial particle dynamics. ArXiv e-prints 1512.05733 (2015)
[51] Günther, T., Theisel, H.: Vortex cores of inertial particles. IEEE Trans. Vis. Comput. Graph. 20(12), 2535-2544 (2014). (Proceedings of the IEEE SciVis) · doi:10.1109/TVCG.2014.2346415
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.