×

Topological data analysis approaches to uncovering the timing of ring structure onset in filamentous networks. (English) Zbl 1460.92063

Summary: In developmental biology as well as in other biological systems, emerging structure and organization can be captured using time-series data of protein locations. In analyzing this time-dependent data, it is a common challenge not only to determine whether topological features emerge, but also to identify the timing of their formation. For instance, in most cells, actin filaments interact with myosin motor proteins and organize into polymer networks and higher-order structures. Ring channels are examples of such structures that maintain constant diameters over time and play key roles in processes such as cell division, development, and wound healing. Given the limitations in studying interactions of actin with myosin in vivo, we generate time-series data of protein polymer interactions in cells using complex agent-based models. Since the data has a filamentous structure, we propose sampling along the actin filaments and analyzing the topological structure of the resulting point cloud at each time. Building on existing tools from persistent homology, we develop a topological data analysis (TDA) method that assesses effective ring generation in this dynamic data. This method connects topological features through time in a path that corresponds to emergence of organization in the data. In this work, we also propose methods for assessing whether the topological features of interest are significant and thus whether they contribute to the formation of an emerging hole (ring channel) in the simulated protein interactions. In particular, we use the MEDYAN simulation platform to show that this technique can distinguish between the actin cytoskeleton organization resulting from distinct motor protein binding parameters.

MSC:

92C37 Cell biology
92C42 Systems biology, networks
62P15 Applications of statistics to psychology
62R40 Topological data analysis
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Adams, H.; Emerson, T.; Kirby, M.; Neville, R.; Peterson, C.; Shipman, P.; Chepushtanova, S.; Hanson, E.; Motta, F.; Ziegelmeier, L., Persistence images: a stable vector representation of persistent homology, J Mach Learn Res, 18, 1, 218-252 (2017) · Zbl 1431.68105
[2] Blumberg, AJ; Gal, I.; Mandell, MA; Pancia, M., Robust statistics, hypothesis testing, and confidence intervals for persistent homology on metric measure spaces, Found Comput Math, 14, 4, 745-789 (2014) · Zbl 1364.55016 · doi:10.1007/s10208-014-9201-4
[3] Bobrowski, O.; Kahle, M., Topology of random geometric complexes: a survey, J Appl Comput Topol, 1, 3-4, 331-364 (2018) · Zbl 1402.60015 · doi:10.1007/s41468-017-0010-0
[4] Bobrowski, O.; Kahle, M.; Skraba, P., Maximally persistent cycles in random geometric complexes, Ann Appl Probab, 27, 4, 2032-2060 (2017) · Zbl 1377.60024 · doi:10.1214/16-AAP1232
[5] Bobrowski, O.; Mukherjee, S.; Taylor, JE, Topological consistency via kernel estimation, Bernoulli, 23, 1, 288-328 (2017) · Zbl 1395.62073 · doi:10.3150/15-BEJ744
[6] Bubenik, P., Statistical topological data analysis using persistence landscapes, J Mach Learn Res, 16, 1, 77-102 (2015) · Zbl 1337.68221
[7] Chazal, F.; Fasy, B.; Lecci, F.; Michel, B.; Rinaldo, A.; Rinaldo, A.; Wasserman, L., Robust topological inference: Distance to a measure and kernel distance, J Mach Learn Res, 18, 1, 5845-5884 (2017) · Zbl 1435.62452
[8] Chazal F, Fasy BT, Lecci F, Rinaldo A, Singh A, Wasserman L (2013) On the bootstrap for persistence diagrams and landscapes. arXiv preprint arXiv:1311.0376 · Zbl 1395.62186
[9] Coffman, VC; Kachur, TM; Pilgrim, DB; Dawes, AT, Antagonistic behaviors of NMY-1 and NMY-2 maintain ring channels in the C. elegans gonad, Biophys J, 111, 10, 2202-2213 (2016) · doi:10.1016/j.bpj.2016.10.011
[10] Cohen-Steiner, D.; Edelsbrunner, H.; Harer, J., Stability of persistence diagrams, Discrete Comput Geom, 37, 1, 103-120 (2007) · Zbl 1117.54027 · doi:10.1007/s00454-006-1276-5
[11] Cohen-Steiner D, Edelsbrunner H, Morozov D (2006) Vines and vineyards by updating persistence in linear time. In: Proceedings of the twenty-second annual symposium on Computational geometry, pp 119-126. ACM · Zbl 1153.68388
[12] Dirafzoon, A.; Bozkurt, A.; Lobaton, E., Geometric learning and topological inference with biobotic networks, IEEE Trans Signal Inf Process Netw, 3, 1, 200-215 (2016)
[13] Edelsbrunner, H.; Harer, J., Persistent homology-a survey, Contemp Math, 453, 257-282 (2008) · Zbl 1145.55007 · doi:10.1090/conm/453/08802
[14] Edelsbrunner H, Harer J (2010) Computational topology: an introduction. American Mathematical Society · Zbl 1193.55001
[15] Edelsbrunner, H.; Letscher, D.; Zomorodian, A., Topological persistence and simplification, Discrete Comput Geom, 28, 4, 511-533 (2002) · Zbl 1011.68152 · doi:10.1007/s00454-002-2885-2
[16] Fasy BT, Kim J, Lecci F, Maria C (2014) Introduction to the R package TDA. arXiv preprint arXiv:1411.1830
[17] Fasy, BT; Lecci, F.; Rinaldo, A.; Wasserman, L.; Balakrishnan, S.; Singh, A., Confidence sets for persistence diagrams, Ann Stat, 42, 6, 2301-2339 (2014) · Zbl 1310.62059 · doi:10.1214/14-AOS1252
[18] Feng M, Porter MA (2019) Persistent homology of geospatial data: a case study with voting. arXiv preprint arXiv:1902.05911
[19] Ghrist, R., Barcodes: the persistent topology of data, Bull Am Math Soc, 45, 1, 61-75 (2008) · Zbl 1391.55005 · doi:10.1090/S0273-0979-07-01191-3
[20] GitHub (2020) Sample R code for connecting and visualizing paths of birth-death pairs through time in persistence diagrams generated from time-series point cloud data. https://github.com/veroniq04/Connect_birth_death_TDA_R
[21] Hudson, AM; Mannix, KM; Cooley, L., Actin cytoskeletal organization in Drosophila germline ring canals depends on Kelch function in a Cullin-RING E3 ligase, Genetics, 201, 3, 1117-1131 (2015) · doi:10.1534/genetics.115.181289
[22] Kelley, CA; Cram, EJ, Regulation of actin dynamics in the C. elegans somatic gonad, J Dev Biol, 7, 1, 6 (2019) · doi:10.3390/jdb7010006
[23] Kim W, Mémoli F, Smith Z (2020) Analysis of dynamic graphs and dynamic metric spaces via zigzag persistence. In: Topological data analysis, pp 371-389. Springer (2020) · Zbl 1448.55008
[24] Komianos, JE; Papoian, GA, Stochastic ratcheting on a funneled energy landscape is necessary for highly efficient contractility of actomyosin force dipoles, Phys Rev X, 8, 2, 021006 (2018)
[25] Maria C, Boissonnat JD, Glisse M, Yvinec M (2014) The gudhi library: simplicial complexes and persistent homology. In: International congress on mathematical software, pp 167-174. Springer · Zbl 1402.57001
[26] Maroulas, V.; Nasrin, F.; Oballe, C., A bayesian framework for persistent homology, SIAM J Math Data Sci, 2, 1, 48-74 (2020) · Zbl 1484.62032 · doi:10.1137/19M1268719
[27] Ong, S.; Foote, C.; Tan, C., Mutations of DMYPT cause over constriction of contractile rings and ring canals during Drosophila germline cyst formation, Dev Biol, 346, 2, 161-169 (2010) · doi:10.1016/j.ydbio.2010.06.008
[28] Osorio DS, Chan FY, Saramago J, Leite J, Silva AM, Sobral AF, Gassmann R, Carvalho AX (2018) Flow-independent accumulation of motor-competent non-muscle myosin II in the contractile ring is essential for cytokinesis. bioRxiv p 333286
[29] Otter, N.; Porter, MA; Tillmann, U.; Grindrod, P.; Harrington, HA, A roadmap for the computation of persistent homology, EPJ Data Sci, 6, 1, 17 (2017) · doi:10.1140/epjds/s13688-017-0109-5
[30] Popov, K.; Komianos, J.; Papoian, GA, MEDYAN: mechanochemical simulations of contraction and polarity alignment in actomyosin networks, PLoS Comput Biol, 12, 4, e1004877 (2016) · doi:10.1371/journal.pcbi.1004877
[31] Robinson, DN; Cant, K.; Cooley, L., Morphogenesis of Drosophila ovarian ring canals, Development, 120, 7, 2015-2025 (1994)
[32] Robinson, DN; Cooley, L., Stable intercellular bridges in development: the cytoskeleton lining the tunnel, Trends Cell Biol, 6, 12, 474-479 (1996) · doi:10.1016/0962-8924(96)84945-2
[33] Saggar, M.; Sporns, O.; Gonzalez-Castillo, J.; Bandettini, PA; Carlsson, G.; Glover, G.; Reiss, AL, Towards a new approach to reveal dynamical organization of the brain using topological data analysis, Nat Commun, 9, 1, 1399 (2018) · doi:10.1038/s41467-018-03664-4
[34] Schwayer, C.; Sikora, M.; Slováková, J.; Kardos, R.; Heisenberg, CP, Actin rings of power, Dev Cell, 37, 6, 493-506 (2016) · doi:10.1016/j.devcel.2016.05.024
[35] Stolz BJ, Emerson T, Nahkuri S, Porter MA, Harrington HA (2018) Topological data analysis of task-based fMRI data from experiments on schizophrenia. arXiv preprint arXiv:1809.08504
[36] Stolz, BJ; Harrington, HA; Porter, MA, Persistent homology of time-dependent functional networks constructed from coupled time series, Chaos Interdiscip J Nonlinear Sci, 27, 4, 047410 (2017) · doi:10.1063/1.4978997
[37] Topaz, CM; Ziegelmeier, L.; Halverson, T., Topological data analysis of biological aggregation models, PloS One, 10, 5, e0126383 (2015) · doi:10.1371/journal.pone.0126383
[38] Ulmer, M.; Ziegelmeier, L.; Topaz, CM, A topological approach to selecting models of biological experiments, PloS One, 14, 3, e0213679 (2019) · doi:10.1371/journal.pone.0213679
[39] Wasserman, L., Topological data analysis, Annu Rev Stat Appl, 5, 501-532 (2018) · doi:10.1146/annurev-statistics-031017-100045
[40] Wolke, U.; Jezuit, EA; Priess, JR, Actin-dependent cytoplasmic streaming in C. elegans oogenesis, Development, 134, 12, 2227-2236 (2007) · doi:10.1242/dev.004952
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.