×

Implementing a noise protected logical qubit in methyl groups via microwave irradiation. (English) Zbl 1402.81080

Summary: We propose a proof-of-principle experiment to encode one logical qubit in noise protected subspace of three identical spins in a methyl group. The symmetry analysis of the wavefunction shows that this fermionic system exhibits a symmetry correlation between the spatial degree of freedom and the spin degree of freedom. We show that one can use this correlation to populate the noiseless subsystem by relying on the interaction between the electric dipole moment of the methyl group with a circularly polarized microwave field. Logical gates are implemented by controlling both the intensity and phase of the applied field.

MSC:

81P68 Quantum computation
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) · Zbl 1049.81015
[2] Schumacher, B, Quantum coding, Phys. Rev. A, 51, 2738, (1995) · doi:10.1103/PhysRevA.51.2738
[3] Viola, L; Knill, E; Laflamme, R, Constructing qubits in physical systems, J. Phys. A Math. Gen., 34, 7067-7079, (2001) · Zbl 0989.81018 · doi:10.1088/0305-4470/34/35/331
[4] Lidar, D A.: Review of decoherence free subspaces, noiseless subsystems, and dynamical decoupling. Adv. Chem. Phys., 154 (2014) · Zbl 1291.81101
[5] Lidar, D.A., Whaley, K.B.: Decoherence-Free Subspaces and Subsystems. Springer, Berlin (2003) · Zbl 1046.81011 · doi:10.1007/3-540-44874-8_5
[6] Viola, L; etal., Experimental realization of noiseless subsystems for quantum information processing, Science, 293, 2059-2063, (2001) · doi:10.1126/science.1064460
[7] Vandersypen, LMK; Steffen, M; Breyta, G; Yannoni, CS; Sherwood, MH; Chuang, IL, Experimental realization of shors quantum factoring algorithm using nuclear magnetic resonance, Nature, 414, 883-887, (2001) · doi:10.1038/414883a
[8] Weinstein, YS; Lloyd, S; Cory, DG, Implementation of the quantum Fourier transform, Phys. Rev. Lett., 86, 1889, (2001) · doi:10.1103/PhysRevLett.86.1889
[9] Schulman, L J., Vazirani, U.: Scalable NMR quantum computation. In: Proceedings of the 31th Annual ACM Symposium on the Theory of Computation (STOC), pp. 322- 329 (1998) · Zbl 1345.81028
[10] Cory, DG; etal., NMR based quantum information processing: achievements and prospects, Fortschr. Phys., 48, 875-907, (2000) · doi:10.1002/1521-3978(200009)48:9/11<875::AID-PROP875>3.0.CO;2-V
[11] Freed, JH, Quantum effects of methyl group rotations in magnetic resonance: ESR splittings and linewidths, J. Chem. Phys., 43, 1710, (1965) · doi:10.1063/1.1696995
[12] Allen, P S., Howard.: On the modelling for a tunneling methyl group. Chem. Phys. Lett., 6 (1970)
[13] Clough, S, Quantum tunnelling effects on nuclear magnetic resonance line width, J. Phys. C Solid St. Phys., 4, 1075, (1971) · doi:10.1088/0022-3719/4/9/028
[14] Horsewill, AJ, Quantum tunnelling aspects of methyl group rotation studied by NMR, Prog. Nucl. Magn. Reson. Spectrosc., 35, 359-389, (1999) · doi:10.1016/S0079-6565(99)00016-3
[15] Icker, M; Berger, S, Unexpected multiple patterns incuded by the haupt-effect, JMR, 219, 1-3, (2012)
[16] Meier, B; etal., Long-lived nuclear spin states in methyl groups and quantum-rotor-induced polarization, J. Am. Chem. Soc., 135, 18746-18749, (2013) · doi:10.1021/ja410432f
[17] Townes, C.H., Schawlow, A.L.: Microwave Spectroscopy. Dover Publications, Mineola (1975)
[18] Jacobsen, S; Andresen, U; Mäder, H, Microwave spectra of o-fluorotoluene and its \(^{13}C\) isotopic species: methyl internal rotation and molecular structure, Struct. Chem., 14, 217-225, (2003) · doi:10.1023/A:1022150801925
[19] Bryce, DL; Wasylishen, RE, Microwave spectroscopy and nuclear magnetic resonance spectroscopys what is the connection?, Acc. Chem. Res., 36, 327-334, (2003) · doi:10.1021/ar020271+
[20] Pitze, RM, The barrier to internal rotation in ethane, Am. Chem. Soc., 16, 207-210, (1983)
[21] Pophristic, V; Goodman, L, Hyperconjugation not steric repulsion leads to the staggered structure of ethane, Nature, 411, 565-568, (2001) · doi:10.1038/35079036
[22] Rudolph, H; Trinkaus, AZ; Naturforsch, A, No article title, Naturforsch. A, 23A, 68, (1968)
[23] Prager, M; Heidemann, A, Rotational tunneling and neutron spectroscopy: a compilation, Chem. Rev., 97, 2933, (1997) · doi:10.1021/cr9500848
[24] Okuyama, K; Mikami, N; Ito, M, Internal rotation of the methyl group in the electronically excited state: o- and m-toluidine, Laser Chem., 7, 197-211, (1987) · doi:10.1155/LC.7.197
[25] Kalkman, I; Vu, C; Schmitt, M; Meerts, WL, Structure and internal rotation in the S0 and S1 states of o-toluidine studied by high resolution UV spectroscopy, Phys. Chem. Chem. Phys., 11, 4311-4318, (2009) · doi:10.1039/b821157d
[26] Bloch, F, Über die quantenmechanik der elektronen in kristallgittern, Z. Phys., 52, 555-600, (1928) · JFM 54.0990.01 · doi:10.1007/BF01339455
[27] Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Oxford University Press, New York (1954) · Zbl 0057.44601
[28] Borna, M; Oppenheimer, JR, On the quantum theory of molecules, Annalen der Physik, 84, 457-484, (1927) · JFM 53.0845.04 · doi:10.1002/andp.19273892002
[29] Bunker, P.R., Jensen, P.: Fundamentals of Molecular Symmetry. Institute of Physics Publishing, Bristol (2005)
[30] Harris, D.C., Bertolucci, M.D.: Symmetry and Spectroscopy. Oxford University Press, Oxford (1978)
[31] Jackson., John David: Classical Electrodynamics. Wiley, Hoboken (1962) · Zbl 0114.42903
[32] Vvedensky, D.D.: Lecture Note on Group Theory. Imperial College London, London (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.