×

FORCE schemes on moving unstructured meshes for hyperbolic systems. (English) Zbl 1442.65191

Summary: The aim of this paper is to propose a new simple and robust numerical flux of the centered type in the context of Arbitrary-Lagrangian-Eulerian (ALE) finite volume schemes. The work relies on the FORCE flux of Toro and Billet and is concerned with the solution of general hyperbolic systems of nonlinear equations involving both conservative and non-conservative terms as well as sources which might become stiff. The proposed approach is formulated in a general way using a path-conservative method and the Roe-type system matrix is computed numerically in order to provide a numerical flux function that can be applied to any given hyperbolic system. Furthermore, one great advantage of the FORCE flux is that no information about the eigenstructure of the system is needed, not even eigenvalues, but only information regarding the geometry of the control volumes are required, which are automatically available in the moving mesh framework. Our method is of the finite volume type, high order accurate in space, thanks to a WENO reconstruction operator, and even in time, due to a fully-discrete ADER one-step discretization. The algorithm applies to moving multidimensional unstructured meshes composed by triangles and tetrahedra. Both accuracy and robustness of the scheme are assessed on a series of test problems for the Euler equations of compressible gas dynamics, for the magnetohydrodynamics equations as well as for the Baer-Nunziato model of compressible multi-phase flows.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Godunov, S. K., Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics, Math. USSR, 47, 271-306 (1959) · Zbl 0171.46204
[2] van Leer, B., Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. Comput. Phys., 32, 101-136 (1979) · Zbl 1364.65223
[3] Lax, P. D., Weak solutions of nonlinear hyperbolic equations and their numerical approximation, Comm. Pure Appl. Math., 7, 159-193 (1954) · Zbl 0055.19404
[4] Toro, E. F.; Billet, S. J., Centered TVD schemes for hyperbolic conservation laws, IMA J. Numer. Anal., 20, 44-79 (2000) · Zbl 0943.65100
[5] Toro, E. F.; Hidalgo, A.; Dumbser, M., FORCE schemes on unstructured meshes I: Conservative hyperbolic systems, J. Comput. Phys., 228, 3368-3389 (2009) · Zbl 1168.65377
[6] Dumbser, M.; Hidalgo, A.; Castro, M.; Parés, C.; Toro, E. F., FORCE schemes on unstructured meshes II: Non – conservative hyperbolic systems, Comput. Methods Appl. Mech. Engrg., 199, 625-647 (2010) · Zbl 1227.76043
[7] Canestrelli, A.; Dumbser, M.; Siviglia, A.; Toro, E. F., Well-balanced high-order centered schemes on unstructured meshes for shallow water equations with fixed and mobile bed, Adv. Water Resour., 33, 291-303 (2010)
[8] Boscheri, W., High order direct arbitrary-Lagrangian-Eulerian (ALE) finite volume schemes for hyperbolic systems on unstructured meshes, Arch. Comput. Methods Eng., 24, 751-801 (2017) · Zbl 1437.65117
[9] von Neumann, J.; Richtmyer, R. D., A method for the calculation of hydrodynamics shocks, J. Appl. Phys., 21, 232-237 (1950) · Zbl 0037.12002
[10] Munz, C. D., On Godunov – type schemes for Lagrangian gas dynamics, SIAM J. Numer. Anal., 31, 17-42 (1994) · Zbl 0796.76057
[11] Smith, R. W., AUSM(ALE): a geometrically conservative arbitrary Lagrangian-Eulerian flux splitting scheme, J. Comput. Phys., 150, 268-286 (1999) · Zbl 0936.76046
[12] Maire, P.-H., A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes, J. Comput. Phys., 228, 2391-2425 (2009) · Zbl 1156.76434
[13] Maire, P.-H., A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids, Comput. & Fluids, 46, 1, 341-347 (2011) · Zbl 1433.76137
[14] Loubère, R.; Maire, P.-H.; Váchal, P., Staggered Lagrangian hydrodynamics based on cell-centered Riemann solver, Commun. Comput. Phys., 10, 4, 940-978 (2010) · Zbl 1373.76138
[15] Carré, G.; Pino, S. Del; Després, B.; Labourasse, E., A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension, J. Comput. Phys., 228, 5160-5183 (2009) · Zbl 1168.76029
[16] Cheng, J.; Shu, C. W., A high order ENO conservative Lagrangian type scheme for the compressible Euler equations, J. Comput. Phys., 227, 1567-1596 (2007) · Zbl 1126.76035
[17] Liu, W.; Cheng, J.; Shu, C. W., High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations, J. Comput. Phys., 228, 8872-8891 (2009) · Zbl 1287.76181
[18] Sambasivan, S. K.; Shashkov, M. J.; Burton, D. E., A finite volume cell-centered Lagrangian hydrodynamics approach for solids in general unstructured grids, Internat. J. Numer. Methods Fluids, 72, 770-810 (2013) · Zbl 1455.74019
[19] Bochev, P.; Ridzal, D.; Shashkov, M. J., Fast optimization-based conservative remap of scalar fields through aggregate mass transfer, J. Comput. Phys., 246, 37-57 (2013) · Zbl 1349.65054
[20] Kucharik, M.; Shashkov, M. J., One-step hybrid remapping algorithm for multi-material arbitrary Lagrangian-Eulerian methods, J. Comput. Phys., 231, 2851-2864 (2012) · Zbl 1323.74108
[21] Liska, R.; Váchal, M. J. Shashkov P.; Wendroff, B., Synchronized flux corrected remapping for ALE methods, Comput. & Fluids, 46, 312-317 (2011) · Zbl 1433.76135
[22] Kucharik, M.; Breil, J.; Galera, S.; Maire, P.-H.; Berndt, M.; Shashkov, M. J., Hybrid remap for multi-material ALE, Comput. & Fluids, 46, 293-297 (2011) · Zbl 1433.76133
[23] Berndt, M.; Breil, J.; Galera, S.; Kucharik, M.; Maire, P.-H.; Shashkov, M., Two – step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods, J. Comput. Phys., 230, 6664-6687 (2011) · Zbl 1408.65077
[24] Boscheri, W.; Dumbser, M., Arbitrary-Lagrangian-Eulerian one – step WENO finite volume schemes on unstructured triangular meshes, Commun. Comput. Phys., 14, 1174-1206 (2013) · Zbl 1388.65075
[25] Boscheri, W.; Dumbser, M., A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D, J. Comput. Phys., 275, 484-523 (2014) · Zbl 1349.76310
[26] Jiang, G.-S.; Shu, C. W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065
[27] Hu, C.; Shu, C. W., Weighted essentially non-oscillatory schemes on triangular meshes, J. Comput. Phys., 150, 97-127 (1999) · Zbl 0926.65090
[28] Dumbser, M.; Kaeser, M.; Titarev, V. A.; Toro, E. F., Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems, J. Comput. Phys., 226, 204-243 (2007) · Zbl 1124.65074
[29] Dumbser, M.; Käser, M., Arbitrary high order non-oscillatory Finite Volume schemes on unstructured meshes for linear hyperbolic systems, J. Comput. Phys., 221, 693-723 (2007) · Zbl 1110.65077
[30] Titarev, V. A.; Toro, E. F., ADER: Arbitrary high order Godunov approach, J. Sci. Comput., 17, 1-4, 609-618 (2002) · Zbl 1024.76028
[31] Titarev, V. A.; Toro, E. F., ADER schemes for three-dimensional nonlinear hyperbolic systems, J. Comput. Phys., 204, 715-736 (2005) · Zbl 1060.65641
[32] Toro, E. F.; Titarev, V. A., Derivative Riemann solvers for systems of conservation laws and ADER methods, J. Comput. Phys., 212, 1, 150-165 (2006) · Zbl 1087.65590
[33] Dumbser, M.; Enaux, C.; Toro, E. F., Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws, J. Comput. Phys., 227, 3971-4001 (2008) · Zbl 1142.65070
[34] Dumbser, M.; Balsara, D. S.; Toro, E. F.; Munz, C.-D., A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes, J. Comput. Phys., 227, 8209-8253 (2008) · Zbl 1147.65075
[35] Boscheri, W.; Dumbser, M., High order accurate direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes on moving curvilinear unstructured meshes, Comput. & Fluids, 136, 48-66 (2016) · Zbl 1390.76398
[36] Boscheri, W.; Dumbser, M., Arbitrary-Lagrangian-Eulerian discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes, J. Comput. Phys., 346, 449-479 (2017) · Zbl 1378.76044
[37] Vilar, F.; Maire, P.-H.; Abgrall, R., A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids, J. Comput. Phys., 276, 188-234 (2014) · Zbl 1349.76278
[38] Vilar, F., Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics, Comput. & Fluids, 64, 64-73 (2012) · Zbl 1365.76129
[39] Vilar, F.; Maire, P.-H.; Abgrall, R., Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics, Comput. & Fluids, 46, 1, 498-604 (2010) · Zbl 1433.76093
[40] Li, Z.; Yu, X.; Jia, Z., The cell – centered discontinuous Galerkin method for Lagrangian compressible Euler equations in two dimensions, Comput. & Fluids, 96, 152-164 (2014) · Zbl 1391.76347
[41] Ortega, A. López; Scovazzi, G., A geometrically – conservative, synchronized, flux – corrected remap for arbitrary Lagrangian-Eulerian computations with nodal finite elements, J. Comput. Phys., 230, 6709-6741 (2011) · Zbl 1284.76255
[42] Scovazzi, G., Lagrangian shock hydrodynamics on tetrahedral meshes: A stable and accurate variational multiscale approach, J. Comput. Phys., 231, 8029-8069 (2012)
[43] Dobrev, V. A.; Ellis, T. E.; Kolev, Tz. V.; Rieben, R. N., Curvilinear finite elements for Lagrangian hydrodynamics, Internat. J. Numer. Methods Fluids, 65, 1295-1310 (2011) · Zbl 1255.76075
[44] Dobrev, V.; Kolev, T.; Rieben, R., High-order curvilinear finite element methods for Lagrangian hydrodynamics, SIAM J. Sci. Comput., 34, 5, B606-B641 (2012) · Zbl 1255.76076
[45] Dobrev, V. A.; Ellis, T. E.; Kolev, T. V.; Rieben, R. N., High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics, Comput. & Fluids, 83, 58-69 (2013) · Zbl 1290.76061
[46] Toumi, I., A weak formulation of Roe’s approximate Riemann solver, J. Comput. Phys., 102, 360-373 (1992) · Zbl 0783.65068
[47] Parés, C.; Castro, M. J., On the well-balance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems, Math. Modelling Numer. Anal., 38, 821-852 (2004) · Zbl 1130.76325
[48] Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM J. Numer. Anal., 44, 300-321 (2006) · Zbl 1130.65089
[49] Castro, M. J.; Gallardo, J. M.; Parés, C., High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems, Math. Comp., 75, 1103-1134 (2006) · Zbl 1096.65082
[50] Dumbser, M.; Castro, M.; Parés, C.; Toro, E. F., ADER schemes on unstructured meshes for non-conservative hyperbolic systems: Applications to geophysical flows, Comput. & Fluids, 38, 1731-1748 (2009) · Zbl 1177.76222
[51] Dumbser, M.; Boscheri, W., High-order unstructured Lagrangian one – step WENO finite volume schemes for non – conservative hyperbolic systems: Applications to compressible multi – phase flows, Comput. & Fluids, 86, 405-432 (2013) · Zbl 1290.76081
[52] Boscheri, W.; Dumbser, M.; Balsara, D. S., High order Lagrangian ADER-WENO schemes on unstructured meshes – application of several node solvers to hydrodynamics and magnetohydrodynamics, Internat. J. Numer. Methods Fluids, 76, 737-778 (2014)
[53] Dumbser, M.; Toro, E. F., A simple extension of the Osher Riemann solver to non-conservative hyperbolic systems, J. Sci. Comput., 48, 70-88 (2011) · Zbl 1220.65110
[54] Rhebergen, S.; Bokhove, O.; van der Vegt, J. J.W., Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations, J. Comput. Phys., 227, 1887-1922 (2008) · Zbl 1153.65097
[55] Friedrich, O., Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids, J. Comput. Phys., 144, 194-212 (1998) · Zbl 1392.76048
[56] Käser, M.; Iske, A., ADER schemes on adaptive triangular meshes for scalar conservation laws, J. Comput. Phys., 205, 486-508 (2005) · Zbl 1072.65116
[57] Hidalgo, A.; Dumbser, M., ADER schemes for nonlinear systems of stiff advection-diffusion-reaction equations, J. Sci. Comput., 48, 173-189 (2011) · Zbl 1221.65231
[58] Stroud, A. H., Approximate Calculation of Multiple Integrals (1971), Prentice-Hall Inc.: Prentice-Hall Inc. Englewood Cliffs, New Jersey · Zbl 0379.65013
[59] Hu, C.; Shu, C. W., A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics., J. Comput. Phys., 150, 561-594 (1999) · Zbl 0937.76051
[60] Loubère, R.; Maire, P.-H.; Váchal, P., 3D staggered Lagrangian hydrodynamics scheme with cell-centered Riemann solver-based artificial viscosity, Internat. J. Numer. Methods Fluids, 72, 22-42 (2013) · Zbl 1455.76164
[61] Burton, D. E.; Morgan, N. R.; Charest, M. R.J.; Kenamond, M. A.; Fung, J., Compatible, energy conserving, bounds preserving remap of hydrodynamic fields for an extended ALE scheme, J. Comput. Phys. (2017) · Zbl 1380.76051
[62] J.R. Kamm, F.X. Timmes, On efficient generation of numerically robust Sedov solutions, Technical Report LA-UR-07-2849, LANL, 2007.; J.R. Kamm, F.X. Timmes, On efficient generation of numerically robust Sedov solutions, Technical Report LA-UR-07-2849, LANL, 2007.
[63] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.-D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys., 175, 645-673 (2002) · Zbl 1059.76040
[64] Balsara, D. S.; Dumbser, M., Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers, J. Comput. Phys., 687-715 (2015) · Zbl 1351.76092
[65] Balsara, D., Second-order accurate schemes for magnetohydrodynamics with divergence-free reconstruction, Astrophys. J. Suppl. Ser., 151, 149-184 (2004)
[66] Balsara, D.; Spicer, D., A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys., 149, 270-292 (1999) · Zbl 0936.76051
[67] Baer, M. R.; Nunziato, J. W., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, J. Multiphase Flow, 12, 861-889 (1986) · Zbl 0609.76114
[68] Kapila, A. K.; Menikoff, R.; Bdzil, J. B.; Son, S. F.; Stewart, D. S., Two-phase modelling of DDT in granular materials: reduced equations, Phys. Fluids, 13, 3002-3024 (2001) · Zbl 1184.76268
[69] Saurel, R.; Abgrall, R., A multiphase godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150, 425-467 (1999) · Zbl 0937.76053
[70] Saurel, R.; Gavrilyuk, S.; Renaud, F., A multiphase model with internal degrees of freedom: Application to shock-bubble interaction, J. Fluid Mech., 495, 283-321 (2003) · Zbl 1080.76062
[71] Deledicque, V.; Papalexandris, M. V., An exact Riemann solver for compressible two-phase flow models containing non-conservative products, J. Comput. Phys., 222, 217-245 (2007) · Zbl 1216.76044
[72] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (1999), Springer · Zbl 0923.76004
[73] Boscheri, W.; Dumbser, M.; Loubère, R.; Maire, P. H., A second-order cell-centered Lagrangian ADER-MOOD finite volume scheme on multidimensional unstructured meshes for hydrodynamics, J. Comput. Phys., 358, 103-129 (2018) · Zbl 1381.76212
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.