×

A local grid refinement technique based upon Richardson extrapolation. (English) Zbl 0884.76059

A grid-embedding technique for the solution of two-dimensional incompressible Navier-Stokes equations is presented. A single coarse grid covers the whole domain, and local grid refinement is carried out in the regions of high gradients without changing the basic grid structure. A finite volume method with collocated primitive variables is employed, ensuring conservation at the interfaces of embedded grids, as well as global conservation. The method is applied to the simulation of a turbulent flow past a backward facing step, the flow over a square obstacle, and the flow in a sudden pipe expansion.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D05 Navier-Stokes equations for incompressible viscous fluids
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chessire, G.; Henshaw, W. D., Composite overlapping meshes for the solution of partial differential equations, J. Comput. Phys., 90, 1-64 (1990) · Zbl 0709.65090
[2] Rai, M. M., A conservative treatment of zonal boundaries for Euler equation calculations, J. Comput. Phys., 62, 472-503 (1986) · Zbl 0619.65085
[3] Mitcheltree, R. A.; Salas, M. D.; Hassan, H. A., Grid embedding technique using cartesian grids for Euler equations, AIAA J., 26, 754-756 (1988)
[4] Bieterman, M. C.; Bussoletti, J. E.; Hilmes, C. L.; Johnson, F. T.; Melving, R. G.; Young, D. P., An adaptive grid method for analysis of 3D aircraft configurations, Comput. Meth. Appl. Mech. Eng., 101, 225-249 (1992) · Zbl 0778.76050
[5] Lapworth, B. L., Three-dimensional mesh embedding for the Navier-Stokes equations using upwind control volumes, Int. J. Num. Meth. Fluids, 17, 195-220 (1993) · Zbl 0779.76055
[6] Berger, M. J.; Jameson, A., Automatic adaptive grid refinement for the Euler equations, AIAA J., 23, 561-568 (1985)
[7] Davis, R. L.; Dannenhoffer, J. F., Three-dimensional adaptive grid-embedding Euler technique, AIAA J., 32, 1167-1174 (1994) · Zbl 0825.76485
[8] Kallinderis, V. G.; Baron, J. R., Adaptation methods for a new Navier-Stokes algorithm, AIAA J., 27, 37-43 (1989)
[9] Grasso, F.; Marini, M.; Passalacqua, M., Viscous high-speed flow computations by adaptive mesh embedding techniques, AIAA J., 30, 1780-1788 (1992) · Zbl 0759.76057
[10] Kallinderis, Y.; Vidwans, A., Generic parallel adaptive-grid Navier-Stokes algorithm, AIAA J., 32, 54-61 (1994) · Zbl 0792.76065
[11] Wanen, G., Application of multigrid and adaptive grid embedding to the two-dimensional flux-split Euler equations, Comm. Appl. Numer. Meth., 8, 771-784 (1992) · Zbl 0758.76048
[12] van der Maarel, H., Adaptive multigrid for the steady Euler equations, Commun. Appl. Numer. Meth., 8, 771-784 (1992) · Zbl 0758.76056
[13] Kotake, S.; Kodama, T., Coarse-fine mesh method for heat and mass transfer in locally complex flows, Int. J. Num. Meth. Eng., 25, 347-355 (1988) · Zbl 0668.76102
[14] de Lange, H.; de Goey, L., Numerical flow modelling in a locally refined grid, Int. J. Num. Meth. Eng., 37, 497-515 (1994) · Zbl 0792.76045
[15] Thompson, M. C.; Ferziger, J. H., An adaptive multigrid technique for the incompressible Navier-Stokes equations, J. Comput. Phys., 82, 94-121 (1989) · Zbl 0665.76034
[16] Srinivasan, K., Segmented multigrid domain decomposition procedure for incompressible viscous flows, Int. J. Num. Meth. Fluids, 15, 1333-1355 (1992) · Zbl 0825.76542
[17] Bai, X. S.; Fuchs, L., Calculation of turbulent combustion of propane in furnaces, Int. J. Num. Meth. Fluids, 17, 221-239 (1993) · Zbl 0800.76285
[18] Coelho, P.; Pereira, J. C.F.; Carvalho, M. G., Calculation of laminar recirculating flows using a local non-staggered grid refinement system, Int. J. Num. Meth. Fluids, 12, 535-557 (1991) · Zbl 0721.76055
[19] Coelho, P.; Pereira, J. C.F., Calculation of a confined axisymmetric laminar diffusion flame using a local grid refinement technique, Combust. Sci. Tech., 92, 243-264 (1993)
[20] Launder, B. E.; Spalding, D. B., The numerical computation of turbulent flows, Comput. Meth. Appl. Mech. Eng., 3, 269-289 (1974) · Zbl 0277.76049
[21] Patankar, S. V., Numerical Heat Transfer and Fluid Flow (1980), Hemisphere: Hemisphere Bristol, PA · Zbl 0595.76001
[22] Majumdar, S., Role of underrelaxation in momentum interpolation for calculation of flow with non-staggered grids, Numer. Heat Trans., 13, 125-132 (1988)
[23] Durst, F.; Schmitt, F., Experimental studies of high Reynolds number backward-facing step flow, (Proceedings of the 5th Symposium on Turbulent Shear Flows. Proceedings of the 5th Symposium on Turbulent Shear Flows, Cornell, Ithaca, NY (1985)), 519-524
[24] Thangam, S.; Hur, N., A highly resolved numerical study of turbulent separated flow past a backward-facing step, Int. J. Eng. Sci., 29, 607-615 (1991) · Zbl 0729.76525
[25] Nallasamy, M., Turbulence models and their applications to the prediction of internal flows: a review, Comput. Fluids, 15, 151-194 (1987) · Zbl 0616.76070
[26] Thangam, S.; Speziale, C. G., Turbulent flow past a backward-facing step: a critical evaluation of two-equation models, AIAA J., 30, 1314-1320 (1992)
[27] Obi, S.; Peric, M.; Scheuerer, G., Finite volume calculations of a high Reynolds number backward facing step flow employing a colocated variable arrangement, (Hirata, M.; Nasagi, N., Transport Phenomena in Turbulent Flows (1988), Hemisphere: Hemisphere New York), 633-647
[28] Dimaczek, G.; Kessler, R.; Martinuzzi, R.; Tropea, C., The flow over two-dimensional surface-mounted obstacles at high Reynolds numbers, (Proceedings of the 7th Symposium on Turbulent Shear Flows, Stanford University. Proceedings of the 7th Symposium on Turbulent Shear Flows, Stanford University, Stanford, CA (1989)), 10.1.1-10.1.6
[29] Kessler, R.; Peric, M.; Scheuerer, G., Solution error estimation in the numerical predictions of turbulent recirculating flows, AGARD, CP-437, P9.1-P9.12 (1988)
[30] Moon, L. F.; Rudinger, G., Velocity distribution in an abruptly expanding circular duct, J. Fluids Eng., 99, 226-230 (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.