×

Object tracking based on an online learning network with total error rate minimization. (English) Zbl 1373.68416

Summary: This paper presents a visual object tracking system which is tolerant to external imaging factors such as illumination, scale, rotation, occlusion and background changes. Specifically, an integration of an online version of total-error-rate minimization based projection network with an observation model of particle filter is proposed to effectively distinguish between the target object and the background. A re-weighting technique is proposed to stabilize the sampling of particle filter for stochastic propagation. For self-adaptation, an automatic updating scheme and extraction of training samples are proposed to adjust to system changes online. Our qualitative and quantitative experiments on 16 public video sequences show convincing performances in terms of tracking accuracy and computational efficiency over competing state-of-the-art algorithms.

MSC:

68T45 Machine vision and scene understanding
68T05 Learning and adaptive systems in artificial intelligence

Software:

PASCAL VOC
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Yilmaz, A.; Javed, O.; Shah, M., Object trackinga survey, ACM J. Comput. Surv., 38, 4, 1-46 (2006)
[3] Yang, H.; Shao, L.; Zheng, F.; Wang, L.; Song, Z., Recent advances and trends in visual trackinga review, Neurocomputing, 74, 18, 3823-3831 (2011)
[4] Ross, D. A.; Lin, R.-S.; Yang, M.-H., Incremental learning for robust visual tracking, Int. J. Comput. Vis., 77, 1, 125-141 (2008)
[5] Avidan, S., Support vector tracking, IEEE Trans. Pattern Anal. Mach. Intell., 26, 8, 1064-1072 (2004)
[6] Avidan, S., Ensemble tracking, IEEE Trans. Pattern Anal. Mach. Intell., 29, 2, 261-271 (2007)
[7] Babenko, B.; Yang, M.-H.; Belongie, S., Robust object tracking with online multiple instance learning, IEEE Trans. Pattern Anal. Mach. Intell., 33, 8, 1619-1632 (2011)
[11] Kalal, Z.; Mikolajczyk, K.; Matas, J., Tracking-learning-detection, IEEE Trans. Pattern Anal. Mach. Intell., 34, 7, 1409-1422 (2011)
[12] Collins, R. T.; Liu, Y.; Leordeanu, M., Online selection of discriminative tracking features, IEEE Trans. Pattern Anal. Mach. Intell., 27, 10, 1631-1643 (2005)
[14] Toh, K.-A., Deterministic neural classification, Neural Comput., 20, 6, 1565-1595 (2008) · Zbl 1140.68483
[15] Toh, K.-A.; Eng, H.-L., Between classification-error approximation and weighted least-squares learning, IEEE Trans. Pattern Anal. Mach. Intell., 30, 4, 658-669 (2008)
[16] Toh, K.-A.; Kim, J.; Lee, S., Biometric scores fusion based on total error rate minimization, Pattern Recognit., 41, 3, 1066-1082 (2008) · Zbl 1129.68492
[17] Kim, Y.; Toh, K.-A.; Teoh, A. B.J.; Eng, H.-L.; Yau, W.-Y., An online learning network for biometric scores fusion, Neurocomputing, 102, 65-77 (2013)
[18] Hager, G. D.; Belhumeur, P. N., Efficient region tracking with parametric models of geometry and illumination, IEEE Trans. Pattern Anal. Mach. Intell., 20, 10, 1025-1039 (1998)
[19] Sethi, I. K.; Jain, R., Finding trajectories of feature points in a monocular image sequence, IEEE Trans. Pattern Anal. Mach. Intell., 9, 1, 56-73 (1987)
[20] Salari, V.; Sethi, I. K., Feature point correspondence in the presence of occlusion, IEEE Trans. Pattern Anal. Mach. Intell., 12, 1, 87-91 (1990)
[21] Rangarajan, K.; Shah, M., Establishing motion correspondence, Comput. Vis. Graph. Image Process.: Image Underst., 54, 1, 56-73 (1991) · Zbl 0774.68146
[22] Broida, T. J.; Cliellappa, R., Estimation of object motion parameters from noisy images, IEEE Trans. Pattern Anal. Mach. Intell., 8, 1, 90-99 (1986)
[26] Kass, M.; Witkin, A.; Terzopoulos, D., Snakesactive contour models, Int. J. Comput. Vis., 1, 4, 321-331 (1988)
[28] Xu, C.; Prince, J. L., Snakes, shapes, and gradient vector flow, IEEE Trans. Image Process., 7, 3, 359-369 (1998) · Zbl 0973.94003
[29] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 1, 12-49 (1988) · Zbl 0659.65132
[30] Black, M. J.; Jepson, A. D., Eigentrackingrobust matching and tracking of articulated objects using a view-based representation, Int. J. Comput. Vis., 26, 1, 63-84 (1998)
[32] Kim, M., Correlation-based incremental visual tracking, Pattern Recognit., 45, 3, 1050-1060 (2012) · Zbl 1227.68110
[33] Choi, H.-C.; Oh, S.-Y., Robust segment-based object tracking using generalized hyperplane approximation, Pattern Recognit., 45, 8, 2980-2991 (2012)
[34] Bai, T.; Li, Y., Robust visual tracking with structured sparse representation appearance model, Pattern Recognit., 45, 6, 2390-2404 (2012) · Zbl 1234.68392
[35] Hotta, K., Adaptive weighting of local classifiers by particle filters for robust tracking, Pattern Recognit., 42, 5, 619-628 (2009) · Zbl 1162.68609
[36] Suresh, S.; Bremond, F.; Thonnat, M.; Kim, H. J., Online learning neural tracker, Neurocomputing, 74, 4, 1681-1695 (2011)
[37] Mei, X.; Ling, H., Robust visual tracking and vehicle classification via sparse representation, IEEE Trans. Pattern Anal. Mach. Intell., 33, 11, 2259-2272 (2011)
[39] Tsochantaridis, I.; Joachims, T.; Hofmann, T.; Altun, Y.; Singer, Y., Large margin methods for structured and interdependent output variables, J. Mach. Learn. Res., 6, 9, 1453-1484 (2005) · Zbl 1222.68321
[41] Han, Z.; Jiao, J.; Zhang, B.; Ye, Q.; Liu, J., Visual object tracking via sample-based adaptive sparse representation (AdaSR), Pattern Recognit., 44, 9, 2170-2183 (2011)
[42] Yao, A.; Wang, G.; Lin, X.; Chai, X., An incremental Bhattacharyya dissimilarity measure for particle filtering, Pattern Recognit., 43, 4, 1244-1256 (2010) · Zbl 1192.68621
[43] Viola, P.; Platt, J. C.; Zhang, C., Multiple instance boosting for object detection, Adv. Neural Inf. Process. Syst., 18, 1417-1424 (2006)
[44] Zhang, K.; Song, H., Real-time visual tracking via online weighted multiple instance learning, Pattern Recognit., 46, 1, 397-411 (2013) · Zbl 1248.68512
[45] Zha, Y.; Yang, T.; Bi, D., Graph-based transductive learning for robust visual tracking, Pattern Recognit., 43, 1, 187-196 (2010) · Zbl 1192.68706
[49] Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K., Extreme learning machinetheory and applications, Neurocomputing, 70, 1, 489-501 (2006)
[50] Huang, G.-B.; Chen, L.; Siew, C.-K., Universal approximation using incremental constructive feedforward networks with random hidden nodes, IEEE Trans. Neural Netw., 17, 4, 879-892 (2006)
[51] Draper, N. R.; Smith, H., Applied Regression Analysis (Wiley Series in Probability and Statistics) (1998), Wiley-Interscience
[52] Doucet, A.; de Freitas, N.; Gordon, N., Sequential Monte Carlo methods in practice (2001), Springer Verlag · Zbl 0967.00022
[53] Jain, A. K.; Nandakumar, K.; Ross, A. A., Score normalization in multimodal biometric systems, Pattern Recognit., 38, 12, 2270-2285 (2005)
[57] Wang, D.; Lu, H.; Yang, M.-H., Online object tracking with sparse prototypes, IEEE Trans. Image Process., 22, 1, 314-325 (2013) · Zbl 1373.94423
[59] Everingham, M.; Van Gool, L.; Williams, C. K.I.; Winn, J.; Zisserman, A., The Pascal visual object classes (VOC) challenge, Int. J. Comput. Vis., 88, 2, 303-338 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.