×

Effect of finite conductivity on the nonlinear behaviour of an electrically charged viscoelastic liquid jet. (English) Zbl 1419.76039

Summary: In this paper a one-dimensional numerical study on the nonlinear behaviour of an electrically charged jet of Oldroyd-B viscoelastic, Taylor-Melcher leaky dielectric liquid is carried out. The effect of surface charge level, axial wavenumber and finite conductivity on the nonlinear evolution of the jet is investigated. Different structures including beads-on-a-string with/without satellite droplets, quasi-spikes and spikes are detected, and their domains in the plane of the non-dimensional axial wavenumber and the electrical Bond number are illustrated. The underlying mechanisms in the formation of the structures are examined. It is found that tangential electrostatic force plays a key role in the formation of a quasi-spike structure. Decreasing liquid conductivity may lead to a decrease in the size of satellite droplets or even the complete removal of them from a beads-on-a-string structure, induce the transition from a beads-on-a-string to a quasi-spike structure or postpone the appearance of a spike. On the other hand, finite conductivity has little influence on filament thinning in a beads-on-a-string structure, owing to the fact that the electrostatic forces are of secondary importance compared with the capillary force. The difference between the finite conductivity, large conductivity and other cases is elucidated. An experiment is carried out to observe spike structures.

MSC:

76A10 Viscoelastic fluids
76E30 Nonlinear effects in hydrodynamic stability
76W05 Magnetohydrodynamics and electrohydrodynamics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alsharif, A. M.; Uddin, J.; Afzaal, M. F., Instability of viscoelastic curved liquid jets, Appl. Math. Model., 39, 3924-3938, (2015) · Zbl 1443.76099
[2] Ambravaneswaran, B.; Wilkes, E. D.; Basaran, O. A., Drop formation from a capillary cube: comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops, Phys. Fluids, 14, 2606-2621, (2002) · Zbl 1185.76030
[3] Anna, S. L.; Mckinley, G. H., Elasto-capillary thinning and breakup of model elastic liquids, J. Rheol., 45, 115-138, (2001)
[4] Ardekani, A. M.; Sharma, V.; Mckinley, G. H., Dynamics of bead formation, filament thinning and breakup in weakly viscoelastic jets, J. Fluid Mech., 665, 46-56, (2010) · Zbl 1225.76188
[5] Basaran, O. A.; Gao, H.; Bhat, P. P., Nonstandard inkjets, Annu. Rev. Fluid Mech., 45, 85-113, (2013) · Zbl 1359.76289
[6] Bazilevskii, A. V.; Rozhkov, A. N., Dynamics of capillary breakup of elastic jets, Fluid Dyn., 49, 827-843, (2014) · Zbl 1308.76006
[7] Bhat, P. P.; Appathurai, S.; Harris, M. T.; Basaran, O. A., On self-similarity in the drop-filament corner region formed during pinch-off of viscoelastic fluid threads, Phys. Fluids, 24, (2012)
[8] Bhat, P. P.; Appathurai, S.; Harris, M. T.; Pasquali, M.; Mckinley, G. H.; Basaran, O. A., Formation of beads-on-a-string structures during break-up of viscoelastic filaments, Nat. Phys., 6, 625-631, (2010)
[9] Bousfield, D. W.; Keunings, R.; Marrucci, G.; Denn, M. M., Nonlinear analysis of the surface tension driven breakup of viscoelastic filaments, J. Non-Newtonian Fluid Mech., 1986, 79-97, (1986)
[10] Brenn, G.; Teichtmeister, S., Linear shape oscillations and polymeric time scales of viscoelastic drops, J. Fluid Mech., 733, 504-527, (2013) · Zbl 1294.76245
[11] Chang, H.-C.; Demekhin, E. A.; Kalaidin, E., Iterated stretching of viscoelastic jets, Phys. Fluids, 11, 1717-1737, (1999) · Zbl 1147.76355
[12] Christanti, Y.; Walker, L. M., Surface tension driven jet break up of strain-hardening polymer solutions, J. Non-Newtonian Fluid Mech., 100, 9-26, (2001)
[13] Christanti, Y.; Walker, L. M., Effect of fluid relaxation time of dilute polymer solutions on jet breakup due to a forced disturbance, J. Rheol., 46, 733-748, (2002)
[14] Clasen, C.; Bico, J.; Entov, V. M.; Mckinley, G. H., ‘Gobbling drops’: the jetting-dripping transition in flows of polymer solutions, J. Fluid Mech., 636, 5-40, (2009) · Zbl 1183.76696
[15] Clasen, C.; Eggers, J.; Fontelos, M. A.; Li, J.; Mckinley, G. H., The beads-on-string structure of viscoelastic threads, J. Fluid Mech., 556, 283-308, (2006) · Zbl 1095.76003
[16] Collins, R. T.; Harris, M. T.; Basaran, O. A., Breakup of electrified jets, J. Fluid Mech., 588, 75-129, (2007) · Zbl 1141.76478
[17] Deblais, A.; Velikov, K. P.; Bonn, D., Pearling instabilities of a viscoelastic thread, Phys. Rev. Lett., 120, (2018)
[18] Eda, G.; Shivkumar, S., Bead-to-fiber transition in electrospun polystyrene, J. Appl. Polym. Sci., 106, 475-487, (2007)
[19] Eggers, J., Instability of a polymeric thread, Phys. Fluids, 26, (2014) · Zbl 1321.76027
[20] Eggers, J.; Villermaux, E., Physics of liquid jets, Rep. Prog. Phys., 71, (2008)
[21] Elcoot, A. E. K., Nonlinear instability of charged liquid jets: effect of interfacial charge relaxation, Phys. A, 375, 411-428, (2007)
[22] Entov, V. M.; Hinch, E. J., Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid, J. Non-Newtonian Fluid Mech., 72, 31-53, (1997)
[23] Feng, J. J., Streching of a straight electrically charged viscoelastic jet, J. Non-Newtonian Fluid Mech., 116, 55-70, (2003) · Zbl 1088.76573
[24] Fontelos, M. A.; Li, J., On the evolution and rupture of filaments in Giesekus and FENE models, J. Non-Newtonian Fluid Mech., 118, 1-16, (2004) · Zbl 1070.76005
[25] Gañán-Calvo, A. M.; López-Herrere, J. M.; Herrada, M. A.; Ramos, A.; Montanero, J. M., Review on the physics of electrospray: from electrokinetics to the operating conditions of single and coaxial Taylor cone-jets, and AC electrospray, J. Aero. Sci., 125, 32-56, (2018)
[26] Greiciunas, E.; Wong, J.; Gorbatenko, I.; Hall, J.; Wilson, M. C. T.; Kapur, N.; Harlen, O. G.; Vadillo, D.; Threlfall-Holmes, P., Design and operation of a Rayleigh Ohnesorge jetting extensinoal rheometer (ROJER) to study extensional properties of low viscosity polymer solutions, J. Rheol., 61, 467-476, (2017)
[27] Gupta, K.; Chokshi, P., Weakly nonlinear stability analysis of polymer fibre spinning, J. Fluid Mech., 776, 268-289, (2015) · Zbl 1382.76005
[28] Higuera, F. J., Flow rate and electric current emitted by a Taylor cone, J. Fluid Mech., 484, 303-327, (2003) · Zbl 1153.76447
[29] Higuera, F. J., Stationary viscosity-dominated electrified capillary jets, J. Fluid Mech., 558, 143-152, (2006) · Zbl 1094.76062
[30] Ismail, N.; Maksoud, F. J.; Ghaddar, N.; Ghali, K.; Tehrani-Bagha, A., Simplified modeling of the electrospinning process from the stable jet region to the unstable region for predicting the final nanofiber diameter, J. Appl. Polym. Sci., 133, (2016)
[31] James, D. F., Boger fluids, Annu. Rev. Fluid Mech., 41, 129-142, (2009) · Zbl 1157.76003
[32] Jimenez, L. N.; Dinic, J.; Parsi, N.; Sharma, V., Extensional relaxation time, pinch-off dynamics, and printability of semidilute polyelectrolyte solutions, Macromolecules, 51, 5191-5208, (2018)
[33] Khismatullin, D. B.; Nadim, A., Shape oscillations of a viscoelastic drop, Phys. Rev. E, 63, (2001)
[34] Kulichikhin, V. G.; Malkin, A. Y.; Semakov, A. V.; Skvortsov, I. Y.; Arinstein, A., Liquid filament instability due to stretch-induced phase separation in polymer solutions, Eur. Phys. J. E., 37, 10, (2014)
[35] Lakdawala, A. M.; Sharma, A.; Thaokar, R., A dual grid level set method based study on similarity and difference bewteen interface dynamics for surface tension and radial electric field induced jet breakup, Chem. Engng Sci., 148, 238-255, (2016)
[36] Li, F.; Yin, X.-Y.; Yin, X.-Z., Axisymmetric and non-axisymmetric instability of an electrically charged viscoelastic liquid jet, J. Non-Newtonian Fluid Mech., 166, 1024-1032, (2011) · Zbl 1282.76108
[37] Li, F.; Yin, X.-Y.; Yin, X.-Z., One-dimensional nonlinear instability study of a slightly viscoelastic, perfectly conducting liquid jet under a radial electric field, Phys. Fluids, 28, (2016)
[38] Li, F.; Yin, X.-Y.; Yin, X.-Z., Oscillation of satellite droplets in an Oldroyd-B viscoelastic liquid jet, Phys. Rev. Fluids, 2, (2017)
[39] Li, F.; Yin, X.-Y.; Yin, X.-Z., Transition from a beads-on-string to a spilke structure in an electrified viscoelastic jet, Phys. Fluids, 29, (2017)
[40] Li, F.; Yin, X.-Y.; Yin, X.-Z., Small-amplitude shape oscillation and linear instability of an electrically charged viscoelastic liquid droplet, J. Non-Newtonian Fluid Mech., 264, 85-97, (2019)
[41] Li, J.; Fontelos, M. A., Drop dynamics on the beads-on-string structure for viscoelastic jets: a numerical study, Phys. Fluids, 15, 922-937, (2003) · Zbl 1186.76320
[42] López-Herrera, J. M.; Gañán-Calvo, A. M., A note on charged capillary jet breakup of conducting liquids: experimental validation of a viscous one-dimensional model, J. Fluid Mech., 501, 303-326, (2004) · Zbl 1067.76510
[43] López-Herrera, J. M.; Gañán-Calvo, A. M.; Perez-Saborid, M., One-dimensional simulation of the breakup of capillary jets of conducting liquids. Application to E.H.D. spraying, J. Aero. Sci., 30, 895-912, (1999)
[44] López-Herrera, J. M.; Gañán-Calvo, A. M.; Popinet, S.; Herrada, M. A., Electrokinetic effects in the breakup of electrified jets: a volume-of-fluid numerical study, Intl J. Multiphase Flow, 71, 14-22, (2015)
[45] López-Herrera, J. M.; Riesco-Chueca, P.; Gañán-Calvo, A. M., Linear stability analysis of axisymmetric perturbations in imperfectly conducting liquid jets, Phys. Fluids, 17, (2005) · Zbl 1187.76321
[46] Malkin, A. Y.; Arinstein, A.; Kulichikhin, V. G., Polymer extension flows and instabilities, Prog. Polym. Sci., 39, 959-978, (2014)
[47] Mathues, W.; Formenti, S.; Mcilroy, C.; Harlen, O. G.; Clasen, C., CaBER vs ROJER - different time scales for the thinning of a weakly elastic jet, J. Rheol., 62, 1135-1153, (2018)
[48] Melcher, J. R.; Taylor, G. I., Electrohydrodynamics: a review of the role of interfacial shear stresses, Annu. Rev. Fluid Mech., 1, 111-146, (1969)
[49] Mohamed, A. S.; Herrada, M. A.; Gañán-Calvo, A. M.; Montanero, J. M., Convective-to-absolute instability transition in a viscoelastic capillary jet subject to unrelaxed axial elastic tension, Phys. Rev. E, 92, (2015)
[50] Morrison, N. F.; Harlen, O. G., Viscoelasticity in inkjet printing, Rheol. Acta, 49, 619-632, (2010)
[51] Oliveira, M. S. N.; Yeh, R.; Mckinley, G. H., Iterated stretching, extensional rheology and formation of beads-on-a-string structures in polymer solutions, J. Non-Newtonian Fluid Mech., 137, 137-148, (2006)
[52] Onses, M. S.; Sutanto, E.; Ferreira, P. M.; Alleyne, A. G., Mechanisms, capabilities, and applications of high-resolutions electrohydrodynamic jet printing, Small, 11, 4237-4266, (2015)
[53] Prilutski, G.; Gupta, R. K.; Sridhar, T.; Ryan, M. E., Model viscoelastic liquids, J. Non-Newtonian Fluid Mech., 12, 233-241, (1983)
[54] Rayleigh, L., On the instability of jets, Proc. Lond. Math. Soc., 10, 4-13, (1878) · JFM 11.0685.01
[55] Rayleigh, L., On the capillary phenomena of jets, Proc. R. Soc. Lond., 29, 71-97, (1879)
[56] Rosell-Llompart, J.; Grifoll, J.; Loscertales, I. G., Electrosprays in the cone-jet mode: from Taylor cone formation to spray development, J. Aero. Sci., 125, 2-31, (2018)
[57] Ruo, A.-C.; Chen, K.-H.; Chang, M.-H.; Chen, F., Instability of a charged non-Newtonian liquid jet, Phys. Rev. E, 85, (2012)
[58] Sattler, R.; Gier, S.; Eggers, J.; Wagner, C., The final stages of capillary break-up of polymer solutions, Phys. Fluids, 24, (2012)
[59] Sattler, R.; Wagner, C.; Eggers, J., Blistering pattern and formation of nanofibers in capillary thinning of polymer solutions, Phys. Rev. Lett., 100, (2008)
[60] Saville, D. A., Electrohydrodynamics: the Taylor-Melcher leaky dielectric model, Annu. Rev. Fluid Mech., 29, 27-64, (1997)
[61] Schümmer, P.; Thelen, H.-G., Break-up of a viscoelastic liquid jet, Rheol. Acta, 27, 39-43, (1988)
[62] Setiawan, E. R.; Heister, S. D., Nonlinear modeling of an infinite electrified jet, J. Electrostat., 42, 243-257, (1997)
[63] Tembely, M.; Vadillo, D.; Mackley, M. R.; Soucemarianadin, A., The matching of a one-dimensional numerical simulation and experiment results for low viscosity Newtonian and non-Newtonian fluids during fast filament stretching and subsequent break-up, J. Rheol., 56, 159-183, (2012)
[64] Tirtaatmadja, V.; Mckinley, G. H.; Cooper-White, J. J., Drop formation and breakup of low viscosity elastic fluids: effects of molecular weight and concentration, Phys. Fluids, 18, (2006)
[65] Turkoz, E.; Lopez-Herrera, J. M.; Eggers, J.; Arnold, C. B.; Deike, L., Axisymmetric simulation of viscoelastic filament thinning with the Oldroyd-B model, J. Fluid Mech., 851, R2, (2018) · Zbl 1421.76014
[66] Varchanis, S.; Dimakopoulos, Y.; Wagner, C.; Tsamopoulos, J., How viscoelastic is human blood plasma?, Soft Matt., 14, 4238-4251, (2018)
[67] Wagner, C.; Amarouchene, Y.; Bonn, D.; Eggers, J., Droplet detachment and satellite bead formation in viscoelastic fluids, Phys. Rev. Lett., 95, (2005)
[68] Wagner, C.; Bourouiba, L.; Mckinley, G. H., An analytic solution for capillary thinning and breakup of FENE-P fluids, J. Non-Newtonian Fluid Mech., 218, 53-61, (2015)
[69] Wang, C.; Wang, Y.; Hashimoto, T., Impact of entanglement density on solution electrospinning: a phenomenological model for fiber diameter, Macromolecules, 49, 7985-7996, (2016)
[70] Wang, Q., Breakup of a poorly conducting liquid thread subject to a radial electric field at zero Reynolds number, Phys. Fluids, 24, (2012)
[71] Wang, Q.; Mählmann, S.; Papageorgiou, D. T., Dynamics of liquid jets and threads under the action of radial electric fields: microthread formation and touchdown singularities, Phys. Fluids, 21, (2009) · Zbl 1183.76559
[72] Wang, Q.; Papageorgiou, D. T., Dynamics of a viscous thread surrounded by another viscous fluid in a cylindrical tube under the action of radial electric fields: breakup and touchdown singularities, J. Fluid Mech., 683, 27-56, (2011) · Zbl 1241.76461
[73] Wang, Y.; Hashimoto, T.; Li, C.-C.; Li, Y.-C.; Wang, C., Extension rate of the straight jet in electrospinning of poly(N-isopropylacrylamide) solutions in dimethylformamide: influences of flow rate and applied voltage, J. Polym. Sci. B, 56, 319-329, (2018)
[74] Yang, L. J.; Liu, Y. X.; Fu, Q. F., Linear stability analysis of an electrified viscoelastic liquid jet, J. Fluids Engng, 134, (2012)
[75] Yoon, J.; Yang, H.-S.; Adn, B.-S. L.; Yu, W.-R., Recent progress in coaxial electrospinning: new parameters, various structures, and wide applications, Adv. Mater., 30, (2018)
[76] Yu, J. H.; Fridrikh, S. V.; Rutledge, G. C., The role of elasticity in the formation of electrospun fibers, Polymer, 47, 4789-4797, (2006)
[77] Zell, A.; Gier, S.; Rafaï, S.; Wagner, C., Is there a relation between the relaxation time measured in CaBER experiments and the first normal stress coefficient?, J. Non-Newtonian Fluid Mech., 165, 1265-1274, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.