×

Flow within models of the vertebrate embryonic heart. (English) Zbl 1402.92141

Summary: Vertebrate cardiogenesis is believed to be partially regulated by fluid forces imposed by blood flow in addition to myocardial activity and other epigenetic factors. To understand the flow field within the embryonic heart, numerical simulations using the immersed boundary method were performed on a series of models that represent simplified versions of some of the early morphological stages of heart development. The results of the numerical study were validated using flow visualization experiments conducted on equivalent dynamically scaled physical models. The chamber and cardiac cushion (or valve) depths in the models were varied, and Reynolds numbers ranging from 0.01 to 1000 corresponding to the scale of the early heart tube to the adult heart were considered. The observed results showed that vortex formation within the chambers occurred for Reynolds numbers on the order of 1–10. This transition to vortical flow appears to be highly sensitive to the chamber and cushion depths within the model. These fluid dynamic events could be important to induce shear sensing at the endothelial surface layer which is thought to be a part of regulating the proper morphological development and functionality of the valves.

MSC:

92C35 Physiological flow
76Z05 Physiological flows
92C15 Developmental biology, pattern formation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baker, D.J., A technique for the precise measurement of small fluid viscosities, J. fluid mech., 26, 573-575, (1966)
[2] Beyer, R.P., A computational model of the cochlea using the immersed boundary method, J. comput. phys., 98, 145-162, (1992) · Zbl 0744.76128
[3] Boisseau, M.R., Roles of mechanical blood forces in vascular diseases, Clin. overview clin. hemorheol. microcirc., 33, 201-207, (2005)
[4] Bottino, D.C., Modeling viscoelastic networks and cell deformation in the context of the immersed boundary method, J. comput. phys., 147, 86-113, (1998) · Zbl 0933.74077
[5] Burggren, W.W., What is the purpose of the embryonic heart beat? or how facts can ultimately prevail over physiological dogma, Physiol. biochem. zool., 77, 333-345, (2004)
[6] Cartwright, J.H.E.; Piro, O.; Tuval, I., Fluid-dynamical basis of the embryonic development of left – right asymmetry in vertebrates, Pnas, 101, 7234-7239, (2004)
[7] Chapman, W.B., The effect of the heart-beat upon the development of the vascular system in the chick, Am. J. ant., 23, 175-203, (1918)
[8] DeGroff, C.G.; Thornburg, B.L.; Pentecost, J.O.; Thornburg, K.L.; Gharib, M.; Sahn, D.J.; Baptista, A., Flow in the early embryonic human heart: a numerical study, Pediatr. cardiol., 24, 375-380, (2003)
[9] der Heiden, K.V.; Groenendijk, B.C.W.; Hierck, B.P.; Hogers, B.; Koerten, H.K.; Mommaas, A.M.; de Groot, A.C.G.; Poelmann, R.E., Monocilia on chicken embryonic endocardium in low shear stress areas, Dev. dynam., 235, 19-28, (2006)
[10] Dyke, M.V., An album of fluid motion, (1982), The Parabolic Press Stanford, CA
[11] Eggleton, C.D.; Popel, A.S., Large deformations of red blood cell ghosts in a simple shear flow, Phys. fluids, 10, 1834-1845, (1998)
[12] Fauci, L.J., Interaction of oscillating filaments—a computational study, J. comput. phys., 86, 294-313, (1990) · Zbl 0682.76105
[13] Fauci, L.J.; Fogelson, A.L., Truncated Newton methods and the modeling of complex immersed elastic structures, Comm. pure appl. math., 46, 787-818, (1993) · Zbl 0741.76103
[14] Fauci, L.J.; Peskin, C.S., A computational model of aquatic animal locomotion, J. comput. phys., 77, 85-108, (1988) · Zbl 0641.76140
[15] Fogelson, A.L., A mathematical model and numerical method for studying for studying platelet adhesion and aggregation during blood clotting, J. comput. phys., 56, 111-134, (1984) · Zbl 0558.92009
[16] Fung, Y.C., Biomechanics: circulation, (1996), Springer New York
[17] Gharib, M.; Rambod, E.; Kheradvar, A.; Sahn, D.J.; Dabiri, J.O., Optimal vortex formation as an index of cardiac health, Pnas, 103, 6305-6308, (2006)
[18] Givelberg, E., 1997. Modeling elastic shells immersed in fluid. Ph.D. Thesis, Courant Institute of Mathematical Sciences, New York University, New York, New York.; Givelberg, E., 1997. Modeling elastic shells immersed in fluid. Ph.D. Thesis, Courant Institute of Mathematical Sciences, New York University, New York, New York. · Zbl 1118.74014
[19] Groenendijk, B.C.W.; der Heiden, K.V.; Hierck, B.P.; Poelmann, R.E., The role of shear stress on ET-1, KLF2, and NOS-3 expression in the developing cardiovascular system of chicken embryos in a venous ligation model, Physiology, 22, 380-389, (2007)
[20] Groenendijk, B.C.W.; Hierck, B.P.; Vrolijk, J.; Baiker, M.; Pourquie, M.J.B.M.; de Groot, A.C.G.; Poelmann, R.E., Changes in shear stress-related gene expression after experimentally altered venous return in the chicken embryo, Circ. res., 96, 1291-1298, (2005)
[21] Gruber, P.J.; Epstein, J.A., Development gone awry—congenital heart disease, Circ. res., 94, 273-283, (2004)
[22] Hove, J.R., In vivo biofluid imaging in the developing zebrafish, Birth defects res., 72, 277-289, (2004)
[23] Hove, J.R., Quantifying cardiovascular flow dynamics during early development, Pediat. res., 60, 6-13, (2006)
[24] Hove, J.R.; Köster, R.W.; Forouhar, A.S.; Bolton, G.A.; Fraser, S.E.; Gharib, M., Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis, Nature, 421, 172-177, (2003)
[25] Jones, E.A.V., 2005. Blood flow and the mammalian embryo. Ph.D. Thesis, California Institute of Technology, Pasadena, CA.; Jones, E.A.V., 2005. Blood flow and the mammalian embryo. Ph.D. Thesis, California Institute of Technology, Pasadena, CA.
[26] Jones, E.A.V.; Baron, M.H.; Fraser, S.E.; Dickinson, M.E., Measuring hemodynamics during development, Am. J. physiol. heart circ. physiol., 287, H1561-H1569, (2004)
[27] Lai, M.-C.; Peskin, C.S., An immersed boundary method with formal second order accuracy and reduced numerical viscosity, J. comput. phys., 160, 705-719, (2000) · Zbl 0954.76066
[28] Leiderman, K.M., Miller, L.A., Fogelson, A.L., 2008. The effects of spatial inhomogeneities on flow through the endothelial surface layer. J. Theor. Biol. 252(2), 313-325.; Leiderman, K.M., Miller, L.A., Fogelson, A.L., 2008. The effects of spatial inhomogeneities on flow through the endothelial surface layer. J. Theor. Biol. 252(2), 313-325. · Zbl 1398.92057
[29] Lister, C.R.B., An explanation for the multivalued heat transport found experimentally for convection in a porous medium, J. fluid mech., 214, 287-320, (1990)
[30] Liu, A.; Rugonyi, S.; Pentecost, J.O.; Thornburg, K.L., Finite element modeling of blood flow-induced mechanical forces in the outflow tract of chick embryonic hearts, Comput. struct., 85, 727-738, (2007)
[31] McDonald, J.A., 1997. Lung Growth and Development (Lung Biology in Health and Disease), Informa Healthcare, New York.; McDonald, J.A., 1997. Lung Growth and Development (Lung Biology in Health and Disease), Informa Healthcare, New York.
[32] McGrath, J.; Brueckner, M., Cilia are at the heart of vertebrate left – right asymmetry, Curr. opin. genet. dev., 13, 385-392, (2003)
[33] McQueen, D.M.; Peskin, C.S., A three-dimensional computer model of the human heart for studying cardiac fluid dynamics, Comput. graph., 34, 56-60, (2000)
[34] Miller, L.A.; Peskin, C.S., When vortices stick: an aerodynamic transition in tiny insect flight, J. exp. biol., 207, 3073-3088, (2004)
[35] Miller, L.A.; Peskin, C.S., A computational fluid dynamics study of ‘clap and fling’ in the smallest insects, J. exp. biol., 208, 195-212, (2005)
[36] Moorman, A.; Webb, S.; Brown, N.A.; Lamers, W.; Anderson, R.H., Development of the heart: (1) formation of the cardiac chambers and arterial trunks, Heart, 89, 806-814, (2003)
[37] Moorman, A.F.M.; Christoffels, V.M., Cardiac chamber formation: development, genes, and evolution, Physiol. rev., 83, 1223-1267, (2003)
[38] Moorman, A.F.M.; Soufan, A.T.; Hagoort, J.; Boer, P.A.J.D.; Christoffels, V.M., Development of the building plan of the heart, Ann. NY acad. sci., 1015, 171-181, (2004)
[39] Nonaka, S.; Shiratori, H.; Saijoh, Y.; Hamada, H., Determination of left – right patterning of the mouse embryo by artificial nodal flow, Nature, 418, 96-99, (2002)
[40] Olesen, S.P.; Clapham, D.E.; Davies, P.F., Hemodynamic shear-stress activates a \(\operatorname{K}^+\) current in vascular endothelial cells, Nature, 331, 168-170, (1988)
[41] Olsson, A.-K.; Dimberg, A.; Kreuger, J.; Claesson-Welsh, L., VEGF receptor signalling—in control of vascular function, Mol. cell biol., 7, 359-371, (2006)
[42] Patterson, C., Even flow: shear cues vascular development, Arterioscler. thromb. vasc. biol., 25, 1761-1762, (2005)
[43] Peacock, J.A., An in vitro study of the onset of turbulence in the sinus of valsalva, Circ. res., 67, 448-460, (1990)
[44] Peskin, C.S., Flow patterns around heart valves: a numerical method, J. comput. phys., 10, 252-271, (1972) · Zbl 0244.92002
[45] Peskin, C.S., The immersed boundary method, Acta numerica., 11, 479-517, (2002) · Zbl 1123.74309
[46] Peskin, C.S.; McQueen, D.M., Fluid dynamics of the heart and its valves, ()
[47] Peskin, C.S.; Wolfe, A.W., The aortic sinus vortex, Fed. proc., 37, 2784-2792, (1978)
[48] Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P., Numerical recipes in Fortran 77: the art of scientific computing, (1992), Cambridge University Press UK · Zbl 0778.65002
[49] Reckova, M.; Rosengarten, C.; deAlmeida, A.; Stanley, C.P.; Wessels, A.; Gourdie, R.G.; Thompson, R.P.; Sedmera, D., Hemodynamics is a key epigenetic factor in development of the cardiac conduction system, Circ. res., 93, 77-85, (2003)
[50] Reitsma, S.; Slaaf, D.W.; Vink, H.; van Zandvoort, M.A.M.J.; oude Egbrink, M.G.A., The endothelial glycocalyx: composition, functions, and visualization, Eur. J. physiol., 454, 345-359, (2007)
[51] Secomb, T.; Hsu, R.; Pries, A., Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells, J. biorheol., 38, 143-150, (2001)
[52] Serluca, F.C.; Drummond, I.A.; Fishman, M.C., Endothelial signaling in kidney morphogenesis: a role for hemodynamic forces, Curr. biol., 12, 492-497, (2002)
[53] Smith, M.; Long, D.; Damiano, E.; Ley, K., Near-wall micro-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo, Biophys. J., 85, 637-645, (2003)
[54] Stanton, A.V., Haemodynamics, wall mechanics and atheroma: a Clinician’s perspective, Proceedings of the institution of mechanical engineers, Part H: J. eng. med., 213, 385-390, (1999)
[55] Topper, J.N.; Gimbrone, M.A., Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype, Mol. med. today, 5, 40-46, (1999)
[56] Vennemann, P.; Kiger, K.T.; Lindken, R.; Groenendijk, B.C.W.; de Vos, S.S.; ten Hagen, T.L.M.; Ursem, N.T.C.; Poelmann, R.E.; Westerweel, J.; Hierck, B.P., In vivo micro particle image velocimetry measurements of blood – plasma in the embryonic Avian heart, J. biomech., 39, 1191-1200, (2006)
[57] Vogel, S.; LaBarbera, M., Simple flow tanks for research and training, Bioscience, 28, 638-643, (1978)
[58] Weinbaum, S.; Zhang, X.; Han, Y.; Vink, H.; Cowin, S.C., Mechanotransduction and flow across the endothelial glycocalyx, Pnas, 100, 7988-7995, (2003)
[59] Wootton, D.M.; Ku, D.N., Fluid mechanics of vascular systems, diseases, and thrombosis, Annu. rev. biomed. eng., 1, 299-329, (1999)
[60] Yao, Y.; Rabodzey, A.; Dewey, C.F., Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress, Am. J. physiol. heart circ. physiol., 293, H1023-H1030, (2007)
[61] Zhu, L.; Peskin, C.S., Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method, J. comput. phys., 179, 452-468, (2002) · Zbl 1130.76406
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.