×

Numerical investigation of heat conduction with multiple moving heat sources. (English) Zbl 1425.80011

Summary: This paper is concerned about the efficiently numerical simulation of heat conduction problems with multiple heat sources that are allowed to move with different speeds. Based on the dynamical domain decomposition upon the trajectories of moving sources, which are solved by a predictor-corrector algorithm, a non-overlapping domain-decomposed moving mesh method is developed. Such a method can not only generate the adaptive mesh efficiently by parallel computing, but also greatly simplify the discretization of the underlying equations without loss of accuracy. Numerical examples for various motions of sources are presented to illustrate the accuracy, the convergence rate and the efficiency of the proposed method. The dependence of the solution on the moving sources such as the types of motion and the distance between sources is numerically investigated. A blow-up phenomenon that occurs at multiple locations simultaneously can also be well observed for the case of symmetrically moving sources.

MSC:

80M25 Other numerical methods (thermodynamics) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Beyer, R.P.; LeVeque, R.J.; Analysis of a one-dimensional model for the immersed boundary method; SIAM J. Numer. Anal.: 1992; Volume 29 ,332-364. · Zbl 0762.65052
[2] Mirkoohi, E.; Ning, J.; Bocchini, P.; Fergani, O.; Chiang, K.N.; Liang, S.Y.; Thermal modeling of temperature distribution in metal additive manufacturing considering effects of build layers, latent heat, and temperature-sensitivity of material properties; J. Manuf. Mater. Process.: 2018; Volume 2 .
[3] Ma, J.; Sun, Y.; Yang, J.; Analytical solution of dual-phase-lag heat conduction in a finite medium subjected to a moving heat source; Int. J. Therm. Sci.: 2018; Volume 125 ,34-43.
[4] Sun, Y.; Liu, S.; Rao, Z.; Li, Y.; Yang, J.; Thermodynamic response of beams on Winkler foundation irradiated by moving laser pulses; Symmetry: 2018; Volume 10 . · Zbl 1425.74268
[5] Reséndiz-Flores, E.O.; Saucedo-Zendejo, F.R.; Two-dimensional numerical simulation of heat transfer with moving heat source in welding using the Finite Pointset Method; Int. J. Heat Mass Transf.: 2015; Volume 90 ,239-245.
[6] Kirk, C.M.; Olmstead, W.E.; The influence of two moving heat sources on blow-up in a reactive-diffusive medium; Zeitschrift für Angewandte Mathematik und Physik: 2000; Volume 51 ,1-16. · Zbl 0966.35066
[7] Kirk, C.M.; Olmstead, W.E.; Blow-up in a reactive-diffusive medium with a moving heat source; Zeitschrift für angewandte Mathematik und Physik: 2002; Volume 53 ,147-159. · Zbl 0994.35068
[8] Li, Z.; Immersed interface methods for moving interface problems; Numer. Algorithms: 1997; Volume 14 ,269-293. · Zbl 0886.65096
[9] Budd, C.J.; Huang, W.; Russell, R.D.; Moving mesh methods for problems with blow-up; SIAM J. Sci. Comput.: 1996; Volume 17 ,305-327. · Zbl 0860.35050
[10] Huang, W.; Ma, J.; Russell, R.D.; A study of moving mesh PDE methods for numerical simulation of blow-up in reaction diffusion equations; J. Comput. Phys.: 2008; Volume 227 ,6532-6552. · Zbl 1145.65080
[11] Hu, Z.; Wang, H.; A moving mesh method for kinetic/hydrodynamic coupling; Adv. Appl. Math. Mech.: 2012; Volume 4 ,685-702.
[12] Cheng, J.B.; Huang, W.; Jiang, S.; Tian, B.; A third-order moving mesh cell-centered scheme for one-dimensional elastic-plastic flows; J. Comput. Phys.: 2017; Volume 349 ,137-153. · Zbl 1380.76035
[13] Lu, C.; Huang, W.; Qiu, J.; An adaptive moving mesh finite element solution of the regularized long wave equation; J. Sci. Comput.: 2018; Volume 74 ,122-144. · Zbl 1383.65125
[14] Zhang, F.; Huang, W.; Li, X.; Zhang, S.; Moving mesh finite element simulation for phase-field modeling of brittle fracture and convergence of Newton’s iteration; J. Comput. Phys.: 2018; Volume 356 ,127-149. · Zbl 1380.74107
[15] Huang, W.; Ren, Y.; Russell, R.D.; Moving mesh partial differential equations (MMPDES) based on the equidistribution principle; SIAM J. Numer. Anal.: 1994; Volume 31 ,709-730. · Zbl 0806.65092
[16] Huang, W.Z.; Russell, R.D.; ; Adaptive Moving Mesh Methods: Berlin, Germany 2011; . · Zbl 1227.65090
[17] Haynes, R.D.; Russell, R.D.; A Schwarz waveform moving mesh method; SIAM J. Sci. Comput.: 2007; Volume 29 ,656-673. · Zbl 1136.65086
[18] Gander, M.J.; Haynes, R.D.; Domain decomposition approaches for mesh generation via the equidistribution principle; SIAM J. Numer. Anal.: 2012; Volume 50 ,2111-2135. · Zbl 1253.65144
[19] Haynes, R.D.; Kwok, F.; Discrete analysis of domain decomposition approaches for mesh generation via the equidistribution principle; Math. Comput.: 2017; Volume 86 ,233-273. · Zbl 1351.65073
[20] Ma, J.; Jiang, Y.; Moving mesh methods for blow-up in reaction-diffusion equations with traveling heat source; J. Comput. Phys.: 2009; Volume 228 ,6977-6990. · Zbl 1175.65097
[21] Zhu, H.; Liang, K.; Cheng, X.; A numerical investigation of blow-up in reaction-diffusion problems with traveling heat sources; J. Comput. Appl. Math.: 2010; Volume 234 ,3332-3343. · Zbl 1196.65150
[22] Hu, Z.; Wang, H.; A moving mesh method for heat equation with traveling singular sources; Appl. Math. J. Chin. Univ. Ser. A: 2013; Volume 28 ,115-126. · Zbl 1289.65180
[23] Toselli, A.; Widlund, O.B.; ; Domain Decomposition Methods—Algorithms and Theory: Berlin, Germany 2005; . · Zbl 1069.65138
[24] Peskin, C.S.; Numerical analysis of blood flow in the heart; J. Comput. Phys.: 1977; Volume 25 ,220-252. · Zbl 0403.76100
[25] Hu, Z.; Moving Mesh Method and Its Applicatios Coupled with Dynamic Domain Decomposition; Ph.D. Thesis: Hangzhou, China 2012; .
[26] Brunner, H.; Wu, X.; Zhang, J.; Computational solution of blow-up problems for semilinear parabolic PDEs on unbounded domains; SIAM J. Sci. Comput.: 2010; Volume 31 ,4478-4496. · Zbl 1208.65124
[27] Huang, W.; Ren, Y.; Russell, R.D.; Moving mesh methods based on moving mesh partial differential equations; J. Comput. Phys.: 1994; Volume 113 ,279-290. · Zbl 0807.65101
[28] Budd, C.J.; Leimkuhler, B.; Piggott, M.D.; Scaling invariance and adaptivity; Appl. Numer. Math.: 2001; Volume 39 ,261-288. · Zbl 0998.65070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.