×

Combined immersed boundary/large eddy simulations of incompressible three-dimensional complex flows. (English) Zbl 1106.76037

Summary: We show how the immersed boundary method can be used with the large eddy simulation to compute moderately high Reynolds number flows in complex geometric configurations. The resulting combination gives an easy-to-use, inexpensive and accurate technique which can be an important step towards the application of computational fluid dynamics to industrially relevant problems. This paper aims at describing the main features of the method, some of the important drawbacks and possible solutions. Several representative examples are discussed in order to show the flexibility and the range of the applicability of this technique.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76M25 Other numerical methods (fluid mechanics) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aftosmis, M.J., Berger, M.J., Melton, J.E.: Robust and efficient Cartesian mesh generation for component-based geometry. AIAA J. 36(6), 952–960 (1998)
[2] Balaras, E., Benocci, C., Piomelli, U.: Two-layer approximate boundary conditions for large-eddy simulations. AIAA J. 34, 1111–1119 (1996) · Zbl 0900.76319
[3] Balaras, E.: Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Comput. Fluids 33, 375–404 (2004) · Zbl 1088.76018
[4] Beyer, R.P., Leveque, R.J.: Analysis of a one-dimensional model for the immersed boundary method. SIAM J. Num. Anal. 29, 332–364 (1992) · Zbl 0762.65052
[5] Blake, W.K.: A Statistical Description of Pressure and Velocity Fields at the Trailing Edge of a Fla Strut. DTNSRDC Report 4241, David Taylor Naval Ship R. & D. Center, Berthesda, Maryland (1975)
[6] Blondeaux, P., Fornarelli, F., Guglielmini, L., Triantafyllou, M.S., Verzicco, R.: Numerical experiments on flapping foils mimicking fish-like locomotion. Phys. Fluids 17, 113601 (2005) · Zbl 1188.76015
[7] Cristallo, A., Balaras, E., Verzicco, R.: Numerical simulation of the flow in a St. Jude Medical bileaflet aortic valve, (2005), in preparation · Zbl 1165.76388
[8] Chapman, D.R.: Computational aerodynamics development and outlook. AIAA J. 17, 1293–1313 (1979) · Zbl 0443.76060
[9] Del Álamo, J.C., Jiménez, J., Zandonade, P., Moser, R.D.: Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135–144 (2004) · Zbl 1059.76031
[10] De Palma, P., de Tullio, M., Pascazio, G., Napolitano, M.: An immersed-boundary method for compressible viscous flows. Comput. Fluids 35(7), 693–702 (2006) · Zbl 1177.76306
[11] Fadlun, E.A., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed-boundary/finite-difference methods for three-dimensional complex flow simulations. J. Comp. Phys. 161, 35–60 (2000) · Zbl 0972.76073
[12] Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991) · Zbl 0825.76334
[13] Goldstein, D., Handler, R., Sirovich, L.: Modeling no-slip flow boundary with an external force field. J. Comput. Phys. 105, 354–366 (1993) · Zbl 0768.76049
[14] Guilmeneau, E., Queutey, P.: A numerical simulation of vortex shedding from an oscillating circular cylinder. J. Fluid Struct. 16(6), 773–794 (2002)
[15] Haworth, D.C., Jansen, K.: Large-eddy simulation on unstructured deforming meshes: Toward reciprocating IC engines. Comput. Fluids 29, 493–524 (2000)
[16] Kaneda, Y., Ishihara, T., Yukokawa, M., Itakura, K., Uno, A.: Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids 15(2), L21–L24 (2003) · Zbl 1185.76191
[17] Khalighi, B., Zhang, S., Koromilas, C., Balkanyi, S.R., Bernal, L.P., Iaccarino, G., Moin, P. Experimental and computational study of unsteady wake flow behind a bluff body with a drag reduction device. SAE Paper, 2001-01B-207, (2001)
[18] Kim, J., Kim, D., Choi, H.: An immersed-boundary finite-volume method for simulation of flow in complex geometries. J. Comput. Phys. 171, 132–150 (2001) · Zbl 1057.76039
[19] Kravchenko, A., Moin, P.: Numerical studies of flow over a circular cylinder at \(Re_D = 3900\) . Phys. Fluids 12, 403–417 (2000) · Zbl 1149.76441
[20] Iaccarino, G., Verzicco, R.: Immersed boundary technique for turbulent flow simulations. App. Mech. Rev. ASME 56, 331–347 (2003)
[21] Jiménez, J.: Turbulence. In: Batchelor, Moffatt, Worster (eds.) Perspectives in Fluid Dynamics, (2003) · Zbl 1030.90116
[22] Lai, M.C., Peskin, C.S.: An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J. Comput. Phys. 160, 705–719 (2000) · Zbl 0954.76066
[23] Lourenco, L., Shih, C.: Characteristics of the plane turbulent near wake of a circular cylinder. A particle image velocimetry study. (Unpublished results taken from Kravchenko and Moin, 2000)
[24] Lund, T.S., Wu, X., Squires, K.D.: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140, 233–258 (1998) · Zbl 0936.76026
[25] Maa \(\beta\) , C., Schumann, U.: Direct numerical simulation of separated turbulent flow over a wavy boundary. Flow simulations with high performance computers. Notes on numerical fluid mechanics, Hirschel Ed. 52 227–241, (1996) · Zbl 0875.76368
[26] Mahesh, K., Costantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. J. Comput. Phys. 197, 215–240 (2004) · Zbl 1059.76033
[27] Majumdar, S., Iaccarino, G., Durbin, P.A.: RANS solver with adaptive structured non-conforming grids. Annual Res. Briefs, Center for Turbulence Research, 353–364 (2001)
[28] McQueen, D.M., Peskin, C.S.: A three-dimensional computational method for blood flow in the heart. II. Contractile fibers. J. Comput. Phys. 82, 289–297 (1989) · Zbl 0701.76130
[29] Meneveau, C., Lund, T.S., Cabot, W.H.: A Lagrangian dynamic sub-grid-scale model of turbulence. J. Fluid Mech. 319, 353–385 (1996) · Zbl 0882.76029
[30] Menter, F.M.: Zonal two-equation \(k\) - \(\omega\) turbulence models for aerodynamic flows. AIAA J. Paper, 93–2906 (1993)
[31] Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005) · Zbl 1117.76049
[32] Mohd-Yosuf, J.: Combined immersed-boundary/B-spline methods for Simulations of flow in complex geometries. Annual Research Briefs, Center for Turbulence Research, 317–328 (1997)
[33] Morse, A.P., Whitelaw, J.H., Yianneskis, M.: Turbulent flow measurements by Laser Doppler Anemometry in a motored reciprocating engine. Report FS/78/24 Imperial College, Dept. Mesh. Eng, (1978)
[34] Ong, L., Wallace, J.: The velocity field of a turbulent very near wake of a circular cylinder. Exp. Fluids 20, 441–453 (1996)
[35] Orlandi, P.: Fluid Flow Phenomena: A Numerical Toolkit, Kluwer pp. 355. · Zbl 0985.76001
[36] O’Rourke, J.: Computational Geometry in C. Cambridge University Press (1998)
[37] Ovchinnikov, V., Piomelli, U., Choudhari, M.M. Numerical simulations of boundary-layer transition induced by a cylinder wake. J. Fluid Mech. 547, 413–441 (2005) · Zbl 1082.76053
[38] Peskin, C.S.: Flow Patterns Around Heart Valves: A Digital Computer Method for Solving the Equations of Motion. PhD thesis, Physiology, Albert Einstein College of Medicine. University Microfilms 72–30, 378, 1972
[39] Piomelli, U., Balaras, E.: Wall-layer models for Large-Eddy-Simulations. Annu. Rev. Fluid Mech. 34, 349–374 (2002) · Zbl 1006.76041
[40] Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge, UK (2000) · Zbl 0966.76002
[41] Saiki, E.M., Biringen, S.: Numerical simulation of a cylinder in uniform flow: Application of a virtual boundary method. J. Comput. Phys. 123, 450–465 (1996) · Zbl 0848.76052
[42] Smagorinsky, J.: General circulation experiments with the primitive equations. Monthly Weather Rev. 91(3), 99–164 (1963)
[43] Swartzrauber, P.N.: A direct method for the discrete solution of separable elliptic equations. SIAM J. Numer. Anal. 11, 1136–1150 (1974) · Zbl 0292.65054
[44] Tessicini, F., Iaccarino, G., Fatica, M., Wang, M., Verzicco, R.: Wall modeling for large-eddy-simulation using an immersed boundary method. CTR, Ann. Res. Briefs 181–187 (2002)
[45] Tseng, Y.H., Ferziger, J.H.: A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys. 192, 593–623 (2003) · Zbl 1047.76575
[46] Verzicco, R., Orlandi, P.: A finite difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comp. Phys. 123, 402–413 (1996) · Zbl 0849.76055
[47] Verzicco, R., Mohd-Yusof, J., Orlandi, P., Haworth, D.C.: Large-eddy simulation in complex geometric configurations using boundary body forces. AIAA J. 38, 427–433 (2000)
[48] Verzicco, R., Fatica, M., Iaccarino, G., Moin, P., Khalighi, B.: Large eddy simulation of a road vehicle with drag reduction devices. AIAA J. 40, 2447–2455 (2002)
[49] Verzicco, R., Iaccarino, G., Fatica, M., Orlandi, P.: Flow in an impeller stirred tank using an immersed boundary technique. AIChE J. 50(6), 1109–1118 (2004)
[50] Vieceli, J.A.: A method for including arbitrary external boundaries in the MAC incompressible fluid computing technique. J. Comp. Phys. 4, 543–551 (1969) · Zbl 0195.55301
[51] Wang, M., Moin, P.: Dynamic wall modeling for LES of complex turbulent flows. Phys. Fluids 14, 2043–2051 (2002) · Zbl 1185.76386
[52] Williamson, C.H.K.: Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477–539
[53] Yang, J., Balaras, E.: An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J. Comp. Phys. 215(1), 12–40 (2006) · Zbl 1140.76355
[54] Yang, J., Preidikman, S., Balaras, E.: A strong coupling scheme for fluid-structure interaction problems in viscous incompressible flows. In: Papadrakakis, M., Oñate, E., Schreffler, B. (eds.) Proceedings of Int. Conf. on Comput. Methods for Coupled Problems in Sci. and Eng. (2005)
[55] Zhu, L., Peskin, C.S.: Interactions of two filaments in a flowing soap film. Phys. Fluids 15, 128–136 (2003) · Zbl 1186.76611
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.