×

An immersed boundary model of the cochlea with parametric forcing. (English) Zbl 1316.35031

Summary: The cochlea or inner ear has a remarkable ability to amplify sound signals. This is understood to derive at least in part from some active process that magnifies vibrations of the basilar membrane (BM) and the cochlear partition in which it is embedded, to the extent that it overcomes the effect of viscous damping from the surrounding cochlear fluid. Many authors have associated this amplification ability to some type of mechanical resonance within the cochlea; however, there is still no consensus regarding the precise cause of amplification. Our work is inspired by experiments showing that the outer hair cells within the cochlear partition change their lengths when stimulated, which can in turn cause periodic distortions of the BM and other structures in the cochlea.
This paper investigates a novel fluid-mechanical resonance mechanism that derives from hydrodynamic interactions between an oscillating BM and the surrounding cochlear fluid. We present a model of the cochlea based on the immersed boundary method, in which a small-amplitude periodic internal forcing due to outer hair cells can induce parametric resonance. A Floquet stability analysis of the linearized equations demonstrates the existence of resonant (unstable) solutions within the range of physical parameters corresponding to the human auditory system. Numerical simulations of the immersed boundary equations support the analytical results and clearly demonstrate the existence of resonant solution modes. These results are then used to illustrate the influence of parametric resonance on wave propagation along the BM and explicit comparisons are drawn with results from another two-dimensional cochlea model.

MSC:

35B34 Resonance in context of PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76D05 Navier-Stokes equations for incompressible viscous fluids
76Z05 Physiological flows
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] J. B. Allen, {\it Two-dimensional cochlea fluid model: New results}, J. Acoust. Soc. Am., 61 (1977), pp. 110-119.
[2] J. B. Allen and M. M. Sondhi, {\it Cochlear macromechanics: Time domain solutions}, J. Acoust. Soc. Am., 66 (1979), pp. 123-132. · Zbl 0411.76056
[3] J. Ashmore et al., {\it Editorial: The remarkable cochlear amplifier}, Hearing Res., 266 (2010), pp. 1-17.
[4] R. P. Beyer, Jr., {\it A computational model of the cochlea using the immersed boundary method}, J. Comput. Phys., 98 (1992), pp. 145-162. · Zbl 0744.76128
[5] R. N. Bracewell, {\it The Fourier Transform and Its Applications}, McGraw-Hill, New York, 2000. · Zbl 0149.08301
[6] W. E. Brownell, C. R. Bader, D. Bertrand, and Y. de Ribaupierre, {\it Evoked mechanical responses of isolated cochlear outer hair cells}, Science, 227 (1985), pp. 194-196.
[7] R. S. Chadwick, A. Inselberg, and K. Johnson, {\it Mathematical model of the cochlea. {\it II}: Results and conclusions}, SIAM J. Appl. Math., 30 (1976), pp. 164-179. · Zbl 0337.76039
[8] A. R. Champneys, {\it Dynamics of parametric excitation}, in Encyclopedia of Complexity and Systems Science, R. A. Meyers, ed., Springer, New York, 2009, pp. 2323-2345.
[9] D. Chan and A. J. Hudspeth, {\it Mechanical responses of the organ of Corti to acoustic and electrical stimulation in vitro}, Biophys. J., 89 (2005), pp. 4382-4395.
[10] R. Cortez, C. S. Peskin, J. M. Stockie, and D. Varela, {\it Parametric resonance in immersed elastic boundaries}, SIAM J. Appl. Math., 65 (2004), pp. 494-520. · Zbl 1074.74024
[11] P. Dallos, {\it The active cochlea}, J. Neurosci., 12 (1992), pp. 4575-4585.
[12] E. de Boer, {\it The “inverse problem” solved for a three-dimensional model of the cochlea. I. Analysis}, J. Acoust. Soc. Am., 98 (1995), pp. 896-903.
[13] E. de Boer and A. L. Nuttall, {\it Cochlear mechanics, tuning, non-linearities}, in The Ear, P. A. Fuchs, ed., Oxford Handb. Auditory Science 1, Oxford University Press, 2010, pp. 139-177.
[14] B. Epp, J. L. Verhey, and M. Mauermann, {\it Modeling cochlear dynamics: Interrelation between cochlea mechanics and psychoacoustics}, J. Acoust. Soc. Am., 128 (2010), pp. 1870-1883.
[15] B. D. Froese and J. K. Wiens, {\it MatIB’s User Guide}, http://github.com/eldila/MatIB (2013).
[16] C. D. Geisler, {\it From Sound to Synapse: Physiology of the Mammalian Ear}, Oxford University Press, New York, 1998.
[17] E. Givelberg and J. Bunn, {\it A comprehensive three-dimensional model of the cochlea}, J. Comput. Phys., 191 (2003), pp. 377-391. · Zbl 1024.92005
[18] J. Howard and A. J. Hudspeth, {\it Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell}, Neuron, 1 (1988), pp. 189-199.
[19] A. J. Hudspeth, {\it Mechanical amplification of stimuli by hair cells}, Curr. Opin. Neurobiol., 7 (1997), pp. 480-486.
[20] A. J. Hudspeth, {\it Making an effort to listen: Mechanical amplification in the ear}, Neuron, 59 (2008), pp. 530-545.
[21] A. Inselberg and R. S. Chadwick, {\it Mathematical model of the cochlea. {\it I}: Formulation and solution}, SIAM J. Appl. Math., 30 (1976), pp. 149-163. · Zbl 0337.76038
[22] P. Jäckel and T. Mullin, {\it A numerical and experimental study of codimension-2 points in a parametrically excited double pendulum}, Proc. Roy. Soc. A, 454 (1998), pp. 3257-3274. · Zbl 0929.70016
[23] K. D. Karavitaki and D. C. Mountain, {\it Evidence for outer hair cell driven oscillatory fluid flow in the tunnel of Corti}, Biophys. J., 92 (2007), pp. 3284-3293.
[24] J. B. Keller and J. C. Neu, {\it Asymptotic analysis of a viscous cochlear model}, J. Acoust. Soc. Am., 77 (1985), pp. 2107-2110.
[25] A. Kern, C. Heid, W.-H. Steeb, N. Stoop, and R. Stoop, {\it Biophysical parameters modification could overcome essential hearing gaps}, PLoS Comp. Biol., 4 (2008), e1000161.
[26] Y. Kim and J. Xin, {\it A two-dimensional nonlinear nonlocal feed-forward cochlear model and time domain computation of multitone interactions}, Multiscale Model. Simul., 4 (2005), pp. 664-690. · Zbl 1092.35113
[27] W. Ko and J. M. Stockie, {\it Correction to “Parametric resonance in immersed elastic boundaries” (SIAM. J. Appl. Math. 65(2):494-520, 2004)}, arXiv:1207.4744v1 [math.AP], 2012. · Zbl 1074.74024
[28] M.-C. Lai and Z. Li, {\it A remark on jump conditions for the three-dimensional Navier-Stokes equations involving an immersed moving membrane}, Appl. Math. Lett., 14 (2001), pp. 149-154. · Zbl 1013.76021
[29] M. B. Lesser and D. A. Berkley, {\it Fluid mechanics of the cochlea: Part {\it I}}, J. Fluid Mech., 51 (1972), pp. 497-512. · Zbl 0232.76098
[30] R. J. LeVeque, C. S. Peskin, and P. D. Lax, {\it Solution of a two-dimensional cochlea model using transform techniques}, SIAM J. Appl. Math., 45 (1985), pp. 450-464. · Zbl 0576.76130
[31] R. J. LeVeque, C. S. Peskin, and P. D. Lax, {\it Solution of a two-dimensional cochlea model with fluid viscosity}, SIAM J. Appl. Math., 48 (1988), pp. 191-213. · Zbl 0647.92011
[32] F. Mammano and J. F. Ashmore, {\it Reverse transduction measured in the isolated cochela by laser Michelson interferometry}, Nature, 365 (1993), pp. 838-841.
[33] F. Mammano and R. Nobili, {\it Biophysics of the cochlea: Linear approximation}, J. Acoust. Soc. Am., 93 (1993), pp. 3320-3332.
[34] D. Manoussaki, E. K. Dimitriadis, and R. S. Chadwick, {\it Cochlea’s graded curvature effect on low frequency waves}, Phys. Rev. Lett., 93 (2006), pp. 3320-3332.
[35] V. S. Markin and A. J. Hudspeth, {\it Modeling the active process of the cochlea: Phase relations, amplification, and spontaneous oscillation}, Biophys. J., 69 (1995), pp. 138-147.
[36] P. Martin and A. J. Hudspeth, {\it Active hair-bundle movements can amplify a hair cell’s response to oscillatory mechanical stimuli}, Proc. Natl. Acad. Sci. USA, 96 (1999), pp. 14306-14311.
[37] R. C. Naidu and D. C. Mountain, {\it Longitudinal coupling in the basilar membrane}, J. Assoc. Res. Otolaryngol., 2 (2001), pp. 257-267.
[38] R. C. Naidu and D. C. Mountain, {\it Basilar membrane tension calculations for the gerbil cochlea}, J. Acoust. Soc. Am., 121 (2007), pp. 994-1002.
[39] H. H. Nakajima, E. S. Olson, D .C. Mountain, and A. E. Hubbard, {\it Electrically evoked otoacoustic emissions from the apical turns of the gerbil cochlea}, J. Acoust. Soc. Am., 96 (1994), pp. 786-794.
[40] S. T. Neely, {\it Finite difference solution of a two-dimensional mathematical model of the cochlea}, J. Acoust. Soc. Am., 69 (1981), pp. 1386-1393.
[41] K. E. Nilsen and I. J. Russell, {\it Timing of cochlear feedback: Spatial and temporal representation of a tone across the basilar membrane}, Nature Neurosci., 2 (1999), pp. 642-648.
[42] R. Nobili, F. Mammano, and J. Ashmore, {\it How well do we understand the cochlea?}, Trends Neurosci., 21 (1998), pp. 159-167.
[43] E. S. Olson, H. Duifhuis, and C. R. Steele, {\it Von Békésy and cochlear mechanics}, Hearing Res., 293 (2012), pp. 31-43.
[44] C. S. Peskin, {\it Partial Differential Equations in Biology (Lecture Notes)}, Courant Institute of Mathematical Sciences, New York University, New York, 1975.
[45] C. S. Peskin, {\it Numerical analysis of blood flow in the heart}, J. Comput. Phys., 25 (1977), pp. 220-252. · Zbl 0403.76100
[46] C. S. Peskin, {\it The immersed boundary method}, Acta Numer., 11 (2002), pp. 1-39. · Zbl 1123.74309
[47] C. Pozrikidis, {\it Boundary-integral modeling of cochlear hydrodynamics}, J. Fluid Struct., 24 (2008), pp. 336-365.
[48] S. Ramamoorthy, N. V. Deo, and K. Grosh, {\it A mechano-electro-acoustical model for the cochlea: Response to acoustic stimuli}, J. Acoust. Soc. Am., 121 (2007), pp. 2758-2773.
[49] T. Reichenbach and A. J. Hudspeth, {\it A ratchet mechanism for amplification in low-frequency mammalian hearing}, Proc. Natl. Acad. Sci. USA, 107 (2010), pp. 4973-4978.
[50] T. Reichenbach and A. J. Hudspeth, {\it The physics of hearing: Fluid mechanics and the active process of the inner ear}, Rep. Prog. Phys., 77 (2014), 076601.
[51] C. A. Shera, A. Tubis, and C. L. Talmadge, {\it Coherent reflection in a two-dimensional cochlea: Short-wave versus long-wave scattering in the generation of reflection-source otoacoustic emissions}, J. Acoust. Sci. Am., 118 (2005), pp. 287-313.
[52] J. M. Stockie and B. R. Wetton, {\it Stability analysis for the immersed fiber problem}, SIAM J. Appl. Math., 55 (1995), pp. 1577-1591. · Zbl 0839.35105
[53] S. Verhulst, T. Dau, and C. A. Shera, {\it Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission}, J. Acoust. Soc. Am., 132 (2012), pp. 3842-3848.
[54] G. von Békésy, {\it Experiments in Hearing}, McGraw-Hill, New York, 1960.
[55] J. Xin, {\it Dispersive instability and its minimization in time-domain computation of steady-state responses of cochlear models}, J. Acoust. Sci. Am., 115 (2004), pp. 2173-2177.
[56] G. Zweig, {\it Finding the impedance of the organ of Corti}, J. Acoust. Soc. Am., 89 (1991), pp. 1229-1254.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.