×

Fractal time and 1/f spectra in dynamic images and human vision. (English) Zbl 1098.92510

Summary: Many physical and biological systems have 1/f\(^{\beta}\) Fourier spectra - a fractal attribute implying multiple similar mechanisms operating at various spatial and temporal scales. These scaling laws of physical phenomena should have correlates in perceptual mechanisms that have evolved to transduce them. We show that measures of a changing visual environment and perceptual measures of how we see it exhibit fractal-like multiscale characteristics; both dynamic images of natural scenes and human temporal frequency perception display commensurate 1/f\(^{\beta}\) spectral behavior.

MSC:

91E30 Psychophysics and psychophysiology; perception
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] B.B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York, 1983.; B.B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York, 1983.
[2] Bak, P.; Tang, C.; Wiesenfeld, K., Self-organized criticality: an explanation for \(1/f\) noise, Phys. Rev. Lett., 59, 381-384 (1987)
[3] Shlesinger, M. F., Fractal time and \(1/f\) noise in complex systems, Ann. NY Acad. Sci., 504, 214-228 (1987)
[4] M. Schroeder, Fractals, Chaos and Power Laws, Freeman, New York, 1991.; M. Schroeder, Fractals, Chaos and Power Laws, Freeman, New York, 1991.
[5] Field, D. J., Relations between the statistics of natural images and the response properties of cortical cells, J. Opt. Soc. Am. A, 4, 2379-2394 (1987)
[6] Burton, G. J.; Moorhead, I. R., Color and spatial structure in natural scenes, Appl. Opt., 26, 157-170 (1987)
[7] Tolhurst, D. J.; Tadmor, Y.; Chou, T., The amplitude spectra of natural images, Ophthal. Physiol. Opt., 12, 229-232 (1992)
[8] van Hatteren, J. H., Theoretical predictions of spatiotemporal receptive fields, J. Comp. Physiol. A, 171, 157-170 (1992)
[9] D.J. Field, Scale invariance and self-similar “wavelet” transforms: an analysis of natural scenes and mammalian visual systems, in: M. Farge, J.C.R. Hunt, J.C. Vassilicos (Eds.), Wavelets, Fractals and Fourier Transforms, Clarendon Press, Oxford, 1993, pp. 151-193.; D.J. Field, Scale invariance and self-similar “wavelet” transforms: an analysis of natural scenes and mammalian visual systems, in: M. Farge, J.C.R. Hunt, J.C. Vassilicos (Eds.), Wavelets, Fractals and Fourier Transforms, Clarendon Press, Oxford, 1993, pp. 151-193. · Zbl 0818.42013
[10] Ruderman, D. L.; Bialek, W., Statistics of natural images: scaling in the woods, Phys. Rev. Lett., 73, 814-817 (1994)
[11] van der Schaaf, A.; van Hateren, J. H., Modelling the power spectra of natural images: statistics and information, Vision Res., 36, 2759-2770 (1996)
[12] Shlesinger, M. F.; West, B. J., Complex fractal dimension of the bronchial tree, Phys. Rev. Lett., 67, 2106-2109 (1991)
[13] Peng, C. K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Sciortino, F.; Simons, M.; Stanley, H. E., Long-range correlations in nucleotide sequences, Nature, 356, 168-170 (1992)
[14] Peng, C. K.; Mietus, J.; Hausdorff, J. M.; Havlin, S.; Stanley, H. E.; Goldberger, A. L., Long-range anticorrelations and non-Gaussian behavior of the heartbeat, Phys. Rev. Lett., 70, 1343-1346 (1993)
[15] Hausdorff, J. M.; Peng, C. K., Multiscaled randomness: a possible source of \(1/f\) noise in biology, Phys. Rev. E, 54, 2154-2157 (1996)
[16] J.B. Bassingthwaighte, L.S. Liebovitch, B.J. West, Fractal Physiology, Oxford University Press, New York, 1994.; J.B. Bassingthwaighte, L.S. Liebovitch, B.J. West, Fractal Physiology, Oxford University Press, New York, 1994.
[17] J.A.S. Kelso, Dynamic Patterns: The Self-Organization of Brain and Behavior, MIT Press, Cambridge, 1995.; J.A.S. Kelso, Dynamic Patterns: The Self-Organization of Brain and Behavior, MIT Press, Cambridge, 1995.
[18] Billock, V. A., Neural acclimation to \(1/f\) spatial frequency spectra in natural images transduced by the human visual system, Physica D, 137, 379-391 (2000)
[19] Field, D. J.; Brady, N., Visual sensitivity, blur and the sources of variability in the amplitude spectra of natural images, Vision Res., 37, 3367-3383 (1997)
[20] Ruderman, D. L., Origins of scaling in natural images, Vision Res., 37, 3385-3398 (1997)
[21] Eckert, M. P.; Buchsbaum, G.; Watson, A. B., Separability of spatiotemporal spectra of image sequences, IEEE Trans. Pattern Anal. Mach. Intell., 14, 1210-1213 (1992)
[22] Eckert, M. P.; Buchsbaum, G., Efficient coding of natural time varying images in the early visual system, Phil. Trans. R. Soc. Lond. B, 329, 385-395 (1993)
[23] Dong, D. W.; Atick, J. J., Statistics of natural time-varying images, Network, 6, 345-358 (1995) · Zbl 0828.92004
[24] Van Hateren, J. H., Processing of natural time series of intensities by the blowfly visual system, Vision Res., 37, 3407-3416 (1997)
[25] Fougere, P. F., On the accuracy of spectrum analysis of red noise processes using maximum entropy and periodogram methods: simulation studies and application to geophysical data, J. Geophys. Res. A, 90, 4355-4366 (1985)
[26] G.M. Jenkins, D.G. Watts, Spectral Analysis and its Applications, Holden-Day, San Francisco, 1968.; G.M. Jenkins, D.G. Watts, Spectral Analysis and its Applications, Holden-Day, San Francisco, 1968. · Zbl 0167.17504
[27] Welch, P. D., The use of the fast Fourier transform for the estimation of power spectra: a method based on time averaging over short modified periodograms, IEEE Trans. Audio Electroacoustic. A, 15, 70-73 (1967)
[28] Franks, L. E., A model for the random video process, Bell Syst. Tech. J., 45, 609-630 (1966) · Zbl 0199.22307
[29] Connor, D. J.; Limb, J. O., Properties of frame difference signals generated by moving images, IEEE Trans. Commun., 22, 1564-1575 (1974)
[30] Kelly, D. H., Spatial frequency, bandwidth and resolution, Appl. Opt., 4, 435-437 (1965)
[31] Coltman, J. W.; Anderson, A. E., Noise limitations to resolving power in electronic imaging, Proc. IRE, 48, 858-865 (1960)
[32] de Lange, H., Experiments on flicker and some calculations on an electrical analogue of the foveal systems, Physica, 18, 935-950 (1952)
[33] Kelly, D. H., Visual responses to time-dependent stimuli. 1. Amplitude sensitivity measurements, J. Opt. Soc. Am., 64, 422-429 (1961)
[34] N.V.S. Graham, Visual Pattern Analyzers, Oxford University Press, Oxford, 1989.; N.V.S. Graham, Visual Pattern Analyzers, Oxford University Press, Oxford, 1989.
[35] Mandler, M. B.; Makous, R., A three channel model of temporal frequency perception, Vision Res., 24, 1881-1889 (1984)
[36] Hess, R. F.; Snowden, R., Temporal properties of human visual filters: numbers, shapes and spatial covariation, Vision Res., 32, 47-59 (1992)
[37] A.P. Ginsburg, Spatial filtering and visual form perception, in: K.R. Boff, L. Kaufman, J.P. Thomas (Eds.), Handbook of Perception and Human Performance, Vol. 2, Wiley, New York, 1986, pp. 34.1-34.41.; A.P. Ginsburg, Spatial filtering and visual form perception, in: K.R. Boff, L. Kaufman, J.P. Thomas (Eds.), Handbook of Perception and Human Performance, Vol. 2, Wiley, New York, 1986, pp. 34.1-34.41.
[38] Billock, V. A.; Harding, T. H., Evidence of spatial and temporal channels in the correlational structure of human spatiotemporal contrast sensitivity, J. Physiol., 490, 509-517 (1996)
[39] Peterzell, D. H.; Werner, J. S.; Kaplan, P. S., Individual differences in contrast sensitivity functions: longitudinal studies of 4-, 6-, and 8-month-old human infants, Vision Res., 35, 961-979 (1995)
[40] Mandelbrot, B. B.; van Ness, J. W., Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10, 422-437 (1968) · Zbl 0179.47801
[41] A.M. Yaglom, Correlation Theory of Stationary and Related Random Functions, Springer, Berlin, 1987.; A.M. Yaglom, Correlation Theory of Stationary and Related Random Functions, Springer, Berlin, 1987. · Zbl 0685.62078
[42] Bassingthwaighte, J. B.; Beyer, R. P., Fractal correlation in heterogeneous systems, Physica D, 53, 71-84 (1991) · Zbl 0737.92005
[43] Kretzmer, E. R., Statistics of television signals, Bell Syst. Tech. J., 31, 751-763 (1952)
[44] Hausdorff, J. M.; Purdon, P. L.; Peng, C. K.; Ladin, Z.; Woi, J. Y.; Goldberger, A. L., Fractal dynamics of human gait: stability of long-range correlations, J. Appl. Physiol., 80, 1448-1457 (1996)
[45] Switkes, E.; Meyer, M. J.; Sloan, J. A., Spatial frequency analysis of the visual environment: anisotropy and the carpentered environment hypothesis, Vision Res., 18, 1393-1399 (1978)
[46] Coppola, D.; White, L.; Fitzpatrick, D.; Purves, D., Unequal representation of cardinal and oblique contours in ferret visual cortex, Proc. Natl. Acad. Sci. USA, 95, 2621-2623 (1998)
[47] Coppola, D.; Purves, H.; McCoy, A.; Purves, D., The distribution of oriented contours in the real world, Proc. Natl. Acad. Sci. USA, 95, 4002-4006 (1998)
[48] M.P. Eckert, G. Buchsbaum, The significance of eye movements and image acceleration for coding television image sequences, in: A.B. Watson (Ed.), Digital Images and Human Vision, MIT Press, Cambridge, 1993, pp. 89-98.; M.P. Eckert, G. Buchsbaum, The significance of eye movements and image acceleration for coding television image sequences, in: A.B. Watson (Ed.), Digital Images and Human Vision, MIT Press, Cambridge, 1993, pp. 89-98.
[49] A.C. Yarbus, Eye Movements and Vision, Plenum Press, New York, 1967.; A.C. Yarbus, Eye Movements and Vision, Plenum Press, New York, 1967.
[50] Oppenheim, A. V.; Lim, J. S., The importance of phase in signals, Proc. IEEE, 69, 529-541 (1981)
[51] J.C. Baird, E. Noma, Fundamentals of Scaling and Psychophysics, Wiley, New York, 1978.; J.C. Baird, E. Noma, Fundamentals of Scaling and Psychophysics, Wiley, New York, 1978.
[52] Benardete, E. A.; Kaplan, E.; Knight, B. W., Contrast gain control in the primate retina: P cells are not X-like, some M cells are, Visual Neurosci., 8, 483-486 (1992)
[53] Nakayama, K., Biological image processing: a review, Vision Res., 25, 625-660 (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.