×

Immersogeometric analysis of moving objects in incompressible flows. (English) Zbl 1519.76161

Summary: We deploy the immersogeometric approach for tracking moving objects. The method immerses objects into non-boundary-fitted meshes and weakly enforces Dirichlet boundary conditions on the object boundaries. The object motion is driven by the integrated surface force and external body forces. A residual-based variational multiscale method is employed to stabilize the finite element formulation for incompressible flows. Adaptively refined quadrature rules are used to better capture the geometry of the immersed boundaries by accurately integrating the intersected background elements. Treatment for the freshly-cleared nodes (i.e., background mesh nodes that are inside the object at one time step, but are in the fluid domain at the next time step) is considered. We assess the accuracy of the method by analyzing object motion in different flow structures including objects freely dropping in viscous fluids and particle focusing in unobstructed and obstructed micro-channels. We show that key quantities of interest are in very good agreements with analytical, numerical and experimental solutions. We also show a much better computational efficiency of this framework than current commercial codes using adaptive boundary-fitted approaches. We anticipate deploying this framework for applications of particle inertial migration in microfluidic channels.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

ANSYS; ParMETIS; Gmsh; PETSc
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Hughes, T. J.R.; Liu, W. K.; Zimmermann, T. K., Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput Methods Appl Mech Eng, 29, 329-349 (1981) · Zbl 0482.76039
[2] Donea, J.; Giuliani, S.; Halleux, J. P., An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid – structure interactions, Comput Methods Appl Mech Eng, 33, 1-3, 689-723 (1982) · Zbl 0508.73063
[3] Donea, J.; Huerta, A.; Ponthot, J.-P.; Rodriguez-Ferran, A., Arbitrary Lagrangian-Eulerian methods, Encyclopedia of Computational Mechanics (2004), John Wiley & Sons
[4] Tezduyar, T. E.; Behr, M.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space – time procedure: I. The concept and the preliminary numerical tests, Comput Methods Appl Mech Eng, 94, 3, 339-351 (1992) · Zbl 0745.76044
[5] Tezduyar, T. E.; Behr, M.; Mittal, S.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space – time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Comput Methods Appl Mech Eng, 94, 3, 353-371 (1992) · Zbl 0745.76045
[6] Johnson, A. A.; Tezduyar, T. E., Parallel computation of incompressible flows with complex geometries, Int J Numer Methods Fluids, 24, 1321-1340 (1997) · Zbl 0882.76044
[7] Johnson, A. A.; Tezduyar, T. E., 3D simulation of fluid-particle interactions with the number of particles reaching 100, Comput Methods Appl Mech Eng, 145, 301-321 (1997) · Zbl 0893.76043
[8] Johnson, A. A.; Tezduyar, T. E., Advanced mesh generation and update methods for 3D flow simulations, Comput Mech, 23, 130-143 (1999) · Zbl 0949.76049
[9] Takizawa, K.; Tezduyar, T. E.; Buscher, A.; Asada, S., Space – time interface-tracking with topology change (ST-TC), Comput Mech, 54, 955-971 (2013) · Zbl 1311.74045
[10] Takizawa, K.; Tezduyar, T. E.; Buscher, A.; Asada, S., Space – time fluid mechanics computation of heart valve models, Comput Mech, 54, 973-986 (2014) · Zbl 1311.74083
[11] Peskin, C. S., The immersed boundary method, Acta Numer, 11, 479-517 (2002) · Zbl 1123.74309
[12] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu Rev Fluid Mech, 37, 239-261 (2005) · Zbl 1117.76049
[13] McQueen, D. M.; Peskin, C. S., Computer-assisted design of butterfly bileaflet valves for the mitral position, Scand J Thorac Cardiovasc Surg, 19, 2, 139-148 (1985)
[14] Beyer, R. P., A computational model of the cochlea using the immersed boundary method, J Comput Phys, 98, 1, 145-162 (1992) · Zbl 0744.76128
[15] Dillon, R.; Fauci, L.; Fogelson, A.; Gaver III, D., Modeling biofilm processes using the immersed boundary method, J Comput Phys, 129, 1, 57-73 (1996) · Zbl 0867.76100
[16] Fauci, L. J.; Peskin, C. S., A computational model of aquatic animal locomotion, J Comput Phys, 77, 1, 85-108 (1988) · Zbl 0641.76140
[17] Glowinski, R.; Pan, T.-W.; Hesla, T. I.; Joseph, D. D., A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int J Multiphase Flow, 25, 5, 755-794 (1999) · Zbl 1137.76592
[18] Glowinski, R.; Pan, T. W.; Hesla, T. I.; Joseph, D. D.; Périaux, J., A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow, J Comput Phys, 169, 2, 363-426 (2001) · Zbl 1047.76097
[19] Glowinski, R.; Kuznetsov, Y., Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems, Comput Methods Appl Mech Eng, 196, 1498-1506 (2007) · Zbl 1173.65369
[20] Zhang, L.; Gerstenberger, A.; Wang, X.; Liu, W. K., Immersed finite element method, Comput Methods Appl Mech Eng, 193, 2051-2067 (2004) · Zbl 1067.76576
[21] Liu, W. K.; Kim, D. W.; Tang, S., Mathematical foundations of the immersed finite element method, Comput Mech, 39, 3, 211-222 (2007) · Zbl 1178.74170
[22] Wang, X. S.; Zhang, L. T.; Liu, W. K., On computational issues of immersed finite element methods, J Comput Phys, 228, 7, 2535-2551 (2009) · Zbl 1158.74049
[23] Wang, X.; Zhang, L. T., Modified immersed finite element method for fully-coupled fluid – structure interactions, Comput Methods Appl Mech Eng, 267, 150-169 (2013) · Zbl 1286.74034
[24] Casquero, H.; Bona-Casas, C.; Gomez, H., A NURBS-based immersed methodology for fluid – structure interaction, Comput Methods Appl Mech Eng, 284, 943-970 (2015) · Zbl 1423.74261
[25] Rüberg, T.; Cirak, F., Subdivision-stabilised immersed B-spline finite elements for moving boundary flows, Comput Methods Appl Mech Eng, 209-212, 266-283 (2012) · Zbl 1243.76031
[26] Kadapa, C.; Dettmer, W. G.; Perić, D., A stabilised immersed boundary method on hierarchical b-spline grids for fluid – rigid body interaction with solid – solid contact, Comput Methods Appl Mech Eng, 318, 242-269 (2017) · Zbl 1439.74429
[27] Nitsche, J., Über ein Variationsprinzip zur Lösung von Dirichlet-problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 36, 9-15 (1971) · Zbl 0229.65079
[28] Kamensky, D.; Hsu, M.-C.; Schillinger, D.; Evans, J. A.; Aggarwal, A.; Bazilevs, Y., An immersogeometric variational framework for fluid – structure interaction: application to bioprosthetic heart valves, Comput Methods Appl Mech Eng, 284, 1005-1053 (2015) · Zbl 1423.74273
[29] Xu, F.; Schillinger, D.; Kamensky, D.; Varduhn, V.; Wang, C.; Hsu, M.-C., The tetrahedral finite cell method for fluids: immersogeometric analysis of turbulent flow around complex geometries, Comput Fluids, 141, 135-154 (2016) · Zbl 1390.76372
[30] Hughes, T. J.R.; Mazzei, L.; Jansen, K. E., Large eddy simulation and the variational multiscale method, Comput Vis Sci, 3, 47-59 (2000) · Zbl 0998.76040
[31] Hughes, T. J.R.; Mazzei, L.; Oberai, A. A.; Wray, A., The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence, Phys Fluids, 13, 505-512 (2001) · Zbl 1184.76236
[32] Hughes, T. J.R.; Scovazzi, G.; Franca, L. P., Multiscale and stabilized methods, Encyclopedia of Computational Mechanics (2004), John Wiley & Sons
[33] Bazilevs, Y.; Calo, V. M.; Cottrel, J. A.; Hughes, T. J.R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput Methods Appl Mech Eng, 197, 173-201 (2007) · Zbl 1169.76352
[34] Bazilevs, Y.; Hughes, T. J.R., Weak imposition of Dirichlet boundary conditions in fluid mechanics, Comput Fluids, 36, 12-26 (2007) · Zbl 1115.76040
[35] Hsu, M.-C.; Wang, C.; Xu, F.; Herrema, A. J.; Krishnamurthy, A., Direct immersogeometric fluid flow analysis using B-rep CAD models, Comput Aided Geom Des, 43, 143-158 (2016) · Zbl 1418.76042
[36] Wang, C.; Xu, F.; Hsu, M.-C.; Krishnamurthy, A., Rapid B-rep model preprocessing for immersogeometric analysis using analytic surfaces, Comput Aided Geom Des, 52, 190-204 (2017) · Zbl 1505.65101
[37] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput Methods Appl Mech Eng, 194, 4135-4195 (2005) · Zbl 1151.74419
[38] Udaykumar, H. S.; Mittal, R.; Rampunggoon, P., Interface tracking finite volume method for complex solid – fluid interactions on fixed meshes, Int J Numer Method Biomed Eng, 18, 2, 89-97 (2002) · Zbl 1093.76543
[39] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput Methods Appl Mech Eng, 32, 199-259 (1982) · Zbl 0497.76041
[40] Tezduyar, T. E., Stabilized finite element formulations for incompressible flow computations, Adv Appl Mech, 28, 1-44 (1992) · Zbl 0747.76069
[41] Tezduyar, T. E.; Osawa, Y., Finite element stabilization parameters computed from element matrices and vectors, Comput Methods Appl Mech Eng, 190, 411-430 (2000) · Zbl 0973.76057
[42] Hsu, M.-C.; Bazilevs, Y.; Calo, V. M.; Tezduyar, T. E.; Hughes, T. J.R., Improving stability of stabilized and multiscale formulations in flow simulations at small time steps, Comput Methods Appl Mech Eng, 199, 828-840 (2010) · Zbl 1406.76028
[43] Johnson, C., Numerical solution of partial differential equations by the finite element method (1987), Cambridge University Press: Cambridge University Press Sweden
[44] Brenner, S. C.; Scott, L. R., The mathematical theory of finite element methods (2002), Springer: Springer Berlin · Zbl 1012.65115
[45] Ern, A.; Guermond, J. L., Theory and practice of finite elements (2004), Springer: Springer Berlin
[46] Kamensky, D.; Hsu, M.-C.; Yu, Y.; Evans, J. A.; Sacks, M. S.; Hughes, T. J.R., Immersogeometric cardiovascular fluid – structure interaction analysis with divergence-conforming B-splines, Comput Methods Appl Mech Eng, 314, 408-472 (2017) · Zbl 1439.76077
[47] Wu, M. C.H.; Kamensky, D.; Wang, C.; Herrema, A. J.; Xu, F.; Pigazzini, M. S., Optimizing fluid – structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear, Comput Methods Appl Mech Eng, 316, 668-693 (2017) · Zbl 1439.74117
[48] Schloegel, K.; Karypis, G.; Kumar, V., ParMETIS - parallel graph partitioning and fill-reducing matrix ordering, Version 4.0.3 (2013), University of Minnesota: University of Minnesota Minneapolis, MN
[49] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K., PETSc users manual, Tech. Rep. ANL-95/11 - Revision 3.10 (2018), Argonne National Laboratory
[50] Bazilevs, Y.; Akkerman, I., Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method, J Comput Phys, 229, 3402-3414 (2010) · Zbl 1290.76037
[51] Newmark, N. M., A method of computation for structural dynamics, ASCE J Eng Mech Div, 85, 67-94 (1959)
[52] Happel, J.; Brenner, H., Low Reynolds number hydrodynamics: with special applications to particulate media (2012), Springer Science & Business Media
[53] Ten Cate, A.; Nieuwstad, C. H.; Derksen, J. J.; Van den Akker, H. E.A., Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity, Phys Fluids, 14, 11, 4012-4025 (2002) · Zbl 1185.76073
[54] Segre, G., Radial particle displacements in poiseuille flow of suspensions, Nature, 189, 209-210 (1961)
[55] Amini, H.; Lee, W.; Di Carlo, D., Inertial microfluidic physics, Lab Chip, 14, 15, 2739-2761 (2014)
[56] Feng, J.; Hu, H. H.; Joseph, D. D., Direct simulation of initial value problems for the motion of solid bodies in a newtonian fluid. Part 2. Couette and Poiseuille flows, J Fluid Mech, 277, 271-301 (1994) · Zbl 0876.76040
[57] Di Carlo, D., Inertial microfluidics, Lab Chip, 9, 21, 3038-3046 (2009)
[58] Geuzaine, C.; Remacle, J.-F., Gmsh: a 3-d finite element mesh generator with built-in pre-and post-processing facilities, Int J Numer Methods Eng, 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[59] Chung, A. J.; Pulido, D.; Oka, J. C.; Amini, H.; Masaeli, M.; Di Carlo, D., Microstructure-induced helical vortices allow single-stream and long-term inertial focusing, Lab Chip, 13, 15, 2942-2949 (2013)
[60] ANSYS fluent theory guide. Release 16.1. Canonsburg, PA: Ansys, Inc.; 2015.; ANSYS fluent theory guide. Release 16.1. Canonsburg, PA: Ansys, Inc.; 2015.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.