×

On the immersed boundary method: finite element versus finite volume approach. (English) Zbl 1390.65105

Summary: Two immersed boundary methods (IBM) for the simulation of fluid flow problems with complex geometries are introduced: a direct-forcing immersed finite element method (IFEM) and a direct-forcing immersed finite volume method (IFVM). In the IFEM a projection approach is presented for the coupled system of time-dependent incompressible Navier-Stokes equations (NSEs) in conjunction with the IBM for solving fluid flow problems in the presence of rigid objects not represented by the underlying mesh. The IBM allows solving the flow for geometries with complex objects without the need of generating a body-fitted mesh. Dirichlet boundary constraints are satisfied applying a boundary force at the immersed body surface. Using projection and interpolation operators from the fluid volume mesh to the solid surface/volume mesh (i.e., the “immersed” boundary) and vice versa, it is possible to impose the extra constraint to the NSEs as a Lagrange multiplier in a fashion very similar to the effect that pressure has on the momentum equations to satisfy the divergence-free constraint. The IFEM approach presented shows third order accuracy in space and second order accuracy in time when the simulation results for the Taylor-Green decaying vortex are compared to the analytical solution. For the IFVM presented, a ghost-cell approach with sharp interface scheme is used to enforce the boundary condition at the fluid/solid interface. The interpolation procedure at the immersed boundary preserves the overall second order accuracy of the base solver. The developed ghost-cell method is applied on a staggered configuration with the semi-implicit method for pressure-linked equations revised algorithm. Second order accuracy in space and first order accuracy in time are obtained when the Taylor-Green decaying vortex test case computed with the IFVM is compared to the analytical solution. Computations were performed using the IFEM and IFVM approaches for the two-dimensional flow over a backward-facing step, two-dimensional flow past a stationary circular cylinder, three-dimensional flow past a sphere and two-dimensional oscillating circular cylinder in a stationary square domain. The numerical results obtained with the discussed IFEM and IFVM were compared against other IBMs available in literature and simulations performed with the commercial computational fluid dynamics code STAR-CCM+/V7.04.006. The benchmark test cases showed that the numerical results obtained with the implemented immersed boundary methods are in good agreement with the predictions from STAR-CCM+ and the numerical data from the other IBMs. The immersed boundary method based on finite element approach is numerically more accurate than the IBM based on finite volume discretization. In contrast, the latter is computationally more efficient than the former.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76M10 Finite element methods applied to problems in fluid mechanics
76M12 Finite volume methods applied to problems in fluid mechanics

Software:

deal.ii; STAR-CCM+
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Peskin, C. S., Flow patterns around heart valves: a numerical method, J. Comput. Phys., 10, 252-271, (1972) · Zbl 0244.92002
[2] Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 220-252, (1977) · Zbl 0403.76100
[3] Beyer, R. P.; LeVeque, R. J., Analysis of a one-dimensional model for the immersed boundary method, SIAM J. Numer. Anal., 29, 332-364, (1992) · Zbl 0762.65052
[4] Lai, M.; Peskin, C. S., An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. Comput. Phys., 160, 705-719, (2000) · Zbl 0954.76066
[5] Goldstein, D.; Handler, R.; Sirovich, L., Modeling a no-slip flow boundary with an external force field, J. Comput. Phys., 105, 354-366, (1993) · Zbl 0768.76049
[6] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-261, (2005) · Zbl 1117.76049
[7] Tyson, R.; Jordan, C. E.; Hebert, J., Modeling anguilliform swimming at intermediate Reynolds number: a review and a novel extension of immersed boundary method applications, Comput. Methods Appl. Mech. Eng., 197, 2105-2118, (2008) · Zbl 1158.76460
[8] Kim, Y.; Peskin, C. S., 3-D parachute simulation by the immersed boundary method, Comput. Fluid, 38, 1065-1079, (2009)
[9] Lima, A. L.F.; Silva, E; Silveira-Neto, A.; Damasceno, J. J.R., Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method, J. Comput. Phys., 189, 351-370, (2003) · Zbl 1061.76046
[10] Uhlmann, M., An immersed boundary method with direct forcing for the simulation of particulate flows, J. Comput. Phys., 174, 345-380, (2005)
[11] Tseng, Y. H.; Ferziger, J. H., A ghost-cell immersed boundary method for flow in complex geometry, J. Comput. Phys., 192, 593-623, (2003) · Zbl 1047.76575
[12] Majumdar, S.; Iaccarino, G.; Durbin, P., RANS solver with adaptive structured boundary non-conforming grids, Annu. Res. Briefs, Cent. Turbul. Res., 353-364, (2001), .Document number is 20020314 067
[13] Ghias, R.; Mittal, R.; Lund, T., A non-body conformal grid method for simulation of compressible flows with complex immersed boundaries, 80, (2004), AIAA
[14] Ghias, R.; Mittal, R.; Dong, H., A sharp interface immersed boundary method for compressible viscous flows, J. Comput. Phys., 225, 528-553, (2007) · Zbl 1343.76043
[15] Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F.; Vargas, A.; von Loebbecke, A., A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries, J. Comput. Phys., 227, 4825-4852, (2008) · Zbl 1388.76263
[16] Udaykumar, H. S.; Mittal, R.; Rampunggoon, P.; Khanna, A., A sharp interface Cartesian grid method for simulating flow with complex moving boundaries, J. Comput. Phys., 174, 345-380, (2001) · Zbl 1106.76428
[17] Ye, T.; Mittal, R.; Udaykumar, H. S.; Shyy, W., An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundary, J. Comput. Phys., 156, 113-142, (1999) · Zbl 0957.76043
[18] Kang, S. K.; Hassan, Y. A., A comparative study of direct-forcing immersed boundary-lattice Boltzmann methods for stationary complex boundaries, Int. J. Numer. Methods Fluids, 66, 1132-1158, (2011) · Zbl 1331.76099
[19] Boffi, D.; Gastaldi, L., A finite element approach for the immersed boundary method, Comput. Struct., 81, 491-501, (2003)
[20] Zhang, L.; Gerstenberger, A.; Wang, X.; Liu, W. K., Immersed finite element method, Comput. Methods Appl. Mech. Eng., 193, 2051-2067, (2004) · Zbl 1067.76576
[21] Glowinski, R.; Pan, T.-W.; Périaux, J., A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Eng., 111, 283-303, (1994) · Zbl 0845.73078
[22] Glowinski, R.; Pan, T.-W.; Périaux, J., A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 112, 133-148, (1994) · Zbl 0845.76069
[23] Glowinski, R.; Pan, T.-W.; Périaux, J., Distributed Lagrange multipliers methods for incompressible viscous flow around moving rigid bodies, Comput. Methods Appl. Mech. Eng., 151, 181-194, (1998) · Zbl 0916.76052
[24] Glowinski, R.; Pan, T.-W.; Hesla, T. I.; Joseph, D. D.; Périaux, J., A distributed Lagrange multiplier/fictitious domain method for flow around moving rigid bodies: application to particulate flows, Comput. Methods Appl. Mech. Eng., 184, 241-267, (1999) · Zbl 0970.76057
[25] Glowinski, R.; Pan, T.-W.; Hesla, T. I.; Joseph, D. D.; Périaux, J., A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flows, Int. J. Numer. Methods Fluids, 30, 1043-1066, (2000) · Zbl 0971.76046
[26] Pan, T.-W.; Sarin, V.; Glowinski, R.; Sameh, A.; Périaux, J., A fictitious domain method with distributed Lagrange multipliers for the numerical simulation of particulate flow and its parallel implementation, Parallel Comput. Fluid Dynam., 53, 467-474, (1998) · Zbl 0984.76053
[27] Patankar, N. A.; Singh, P.; Joseph, D.; Glowinski, R.; Pan, T. W., A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiphase Flow, 26, 1509-1524, (2000) · Zbl 1137.76712
[28] Patankar, N. A., A formulation for fast computations of rigid particulate flows, Cent. Turb. Res. Annu. Res. Briefs, 185-196, (2001), .Document number is 20020314 067
[29] Sharma, N.; Patankar, N. A., A fast computation technique for the direct numerical simulation of rigid particulate flows, J. Comput. Phys., 205, 439-457, (2005) · Zbl 1087.76533
[30] Patankar, S. V., Numerical heat transfer and fluid flow, (1980), Taylor & Francis · Zbl 0595.76001
[31] Versteeg, H.; Malalasekra, W., An introduction to computational fluid dynamics: the finite volume method, (2007), Prentice Hall
[32] Shen, L.; Chan, E., Numerical simulation of fluid-structure interaction using a combined volume of fluid and immersed boundary method, Ocean Eng., 35, 939-952, (2008)
[33] Shen, L.; Chan, E.; Lin, P., Calculation of hydrodynamic forces acting on a submerged moving object using immersed boundary method, Comput. Fluids, 38, 691-702, (2009) · Zbl 1193.76091
[34] Ferziger, J. H.; Peric, M., Computational methods for fluid dynamics, (2002), Springer · Zbl 0869.76003
[35] Bangerth, W.; Hartmann, R.; Kanschat, G., Deal.II—a general purpose object oriented finite element library, AMC Trans. Math. Softw., 33, 1-17, (2007) · Zbl 1365.65248
[36] Brezzi, F.; Fortin, M., Mixed and hybrid finite element methods. Springer series in computational mathematics, vol. 15, (1991), Springer-Verlag New York · Zbl 0788.73002
[37] Guermond, J. L.; Minev, P.; Shen, J., Error analysis of pressure-correction schemes for the time-dependent Stokes equations with open boundary conditions, SIAM J. Numer. Anal., 43, 239-258, (2005) · Zbl 1083.76044
[38] Borouchaki, H.; Lo, S. H., Fast Delaunay triangulation in three dimensions, Comput. Methods Appl. Mech. Eng., 128, 153-167, (1995) · Zbl 0859.65149
[39] Mavriplis, D. J., An advancing front Delaunay triangulation algorithm designed for robustness, J. Comput. Phys., 117, 90-101, (1995) · Zbl 0815.68121
[40] Kim, J.; Kim, D.; Choi, H., An immersed-boundary finite-volume method for simulations of flow in complex geometries, J. Comput. Phys., 171, 132-150, (2001) · Zbl 1057.76039
[41] Frisani, A.; Hassan, Y. A., On the immersed boundary method: finite element versus finite volume approach, (20th international conference on nuclear engineering, Anaheim,CA, U.S.A, (July 2012)) · Zbl 1390.65105
[42] Frisani, A., Direct forcing immersed boundary methods: finite element versus finite volume approach, (December 2012), Texas A&M University TX, U.S.A, [Ph.D. thesis]
[43] Frisani, A.; Hassan, Y. A., Direct forcing immersed boundary method: finite element versus finite volume approach for the simulation of fluid flow and conjugate heat transfer problems, (15th international topical meeting on nuclear reactor thermal hydraulics, Pisa, Italy, (May 2013))
[44] Wu, J.; Shu, C., Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications, J. Comput. Phys., 228, 1963-1979, (2009) · Zbl 1243.76081
[45] Kim, J.; Moin, P., Application of a fractional step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59, 308-323, (1985) · Zbl 0582.76038
[46] Linnick, M. N.; Fasel, H. F., A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains, J. Comput. Phys., 204, 157-192, (2005) · Zbl 1143.76538
[47] Fornberg, B., A numerical study of steady viscous flow past a circular cylinder, J. Fluid Mech., 98, 819-855, (1980) · Zbl 0428.76032
[48] Calhoun, D., A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions, J. Comput. Phys., 176, 231-275, (2002) · Zbl 1130.76371
[49] Niu, X. D.; Shu, C.; Chew, Y. T.; Peng, Y., A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows, Phys. Lett. A, 354, 173-182, (2006) · Zbl 1181.76111
[50] He, X.; Doolen, G., Lattice Boltzmann method on curvilinear coordinate system: flow around a circular cylinder, J. Comput. Phys., 134, 306-315, (1997) · Zbl 0886.76072
[51] Wang, Z.; Fan, J.; Cen, K., Immersed boundary method for the simulation of 2D viscous flow based on vorticity-velocity formulations, J. Comput. Phys., 228, 1504-1520, (2009) · Zbl 1252.76054
[52] Xu, S., The immersed interface method for simulating prescribed motion of rigid objects in an incompressible viscous flows, J. Comput. Phys, 227, 5045-5071, (2008) · Zbl 1388.76280
[53] Xu, S.; Wang, Z. J., An immersed interface method for simulating the interaction of a fluid with moving boundaries, J. Comput. Phys., 216, 454-493, (2006) · Zbl 1220.76058
[54] Choi, J.-I.; Oberoi, R. C.; Edwards, J. R.; Rosati, J. A., An immersed boundary method for complex incompressible flows, J. Comput. Phys., 224, 757-784, (2007) · Zbl 1123.76351
[55] Pacheco, J. R.; Pacheco-Vega, A.; Rodic, T.; Peck, R. E., Numerical simulations of heat transfer and fluid flow problems using an immersed-boundary finite-volume method on nonstaggered grids, J. Numer. Heat Transf. B-Fundam., 48, 1-24, (2005)
[56] Coutanceau, M.; Bouard, R., Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. part 1. steady flow, J. Fluid Mech., 79, 231-256, (1977)
[57] Tritton, D. J., Experiments on the flow past a circular cylinder al low Reynolds number, J. Fluid Mech., 6, 547-567, (1959) · Zbl 0092.19502
[58] Marella, S.; Krishnan, S.; Liu, H.; Udaykumar, H. S., Sharp interface Cartesian grid method I: an easily implemented technique for 3D moving boundary computations, J. Comput Phys., 210, 1-31, (2005) · Zbl 1154.76359
[59] Haeri, S.; Shrimpton, J. S., On the application of immersed boundary, fictitious domain and body-conformal methods to many particle multiphase flows, Int. J. Multiphase Flow, 40, 38-55, (2012)
[60] Roshko, A., On the development of turbulent wakes from vortex streets, (1954), National Advisory Committee for Aeronautics Washington, D.C., http://resolver.caltech.edu/CaltechAUTHORS:ROSnacarpt1191
[61] Williamson, C. H.K., Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers, J. Fluid Mech., 206, 579-627, (1989)
[62] Berger, E.; Wille, R., Periodic flow phenomena, Ann. Rev. Fluid Mech., 4, 313-340, (1972)
[63] Liu, C.; Zheng, X.; Sung, C. H., Preconditioned multigrid methods for unsteady incompressible flows, J. Comput. Phys., 139, 35-57, (1998) · Zbl 0908.76064
[64] Sui, Y.; Chew, Y.-T.; Roy, P.; Low, H.-T., A hybrid immersed-boundary and multi-block lattice Boltzmann method for simulating fluid and moving-boundaries interactions, Int. J. Numer. Methods Fluids, 53, 1727-1754, (2007) · Zbl 1110.76042
[65] Saiki, E. M.; Biringen, S., Numerical simulation of a cylinder in uniform flow: application of a visual boundary method, J. Comput. Phys., 123, 450-465, (1996) · Zbl 0848.76052
[66] Engelman, M. S.; Jaminia, M., Int. J. Numer. Methods Fluids, 11, 985, (1990)
[67] Ji, C.; Munjiza, A.; Williams, J. J.R., A novel iterative direct-forcing immersed boundary method and its finite volume applications, J. Comput. Phys., 231, 1797-1821, (2012) · Zbl 1408.76404
[68] Johnson, T. A.; Patel, V. C., Flow past a sphere up to a Reynolds number of 300, J. Fluid Mech., 378, 19-70, (1999)
[69] Constantinescu, G. S.; Squires, K. D., LES and DNS investigations of turbulent flow over a sphere, (1989), AIAA Press Washington, AIAA paper 2000-0540
[70] Liao, C. C.; Chang, Y. W.; Lin, C. A.; McDonough, J. M., Simulating flows with moving rigid boundary using immersed-boundary method, Comput. Fluid, 39, 152-167, (2010) · Zbl 1242.76174
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.