×

An extension of the immersed boundary method based on the distributed Lagrange multiplier approach. (English) Zbl 1351.76105

Summary: An extended formulation of the immersed boundary method, which facilitates simulation of incompressible isothermal and natural convection flows around immersed bodies and which may be applied for linear stability analysis of the flows, is presented. The Lagrangian forces and heat sources are distributed on the fluid-structure interface. The method treats pressure, the Lagrangian forces, and heat sources as distributed Lagrange multipliers, thereby implicitly providing the kinematic constraints of no-slip and the corresponding thermal boundary conditions for immersed surfaces. Extensive verification of the developed method for both isothermal and natural convection 2D flows is provided. Strategies for adapting the developed approach to realistic 3D configurations are discussed.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

SuperLU-DIST
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Peskin, C. S., Flow patterns around heart valves: a numerical method, J. Comput. Phys., 10, 252-271 (1972) · Zbl 0244.92002
[2] Peskin, C. S., The immersed boundary method, Acta Numer., 11, 479-517 (2002) · Zbl 1123.74309
[3] Mittal, R.; Iaccarino, G., The immersed boundary method, Annu. Rev. Fluid Mech., 37, 239-261 (2005) · Zbl 1117.76049
[4] Mohd-Yusof, J., Combined immersed-boundary/b-spline methods for simulations of flow in complex geometries, (Annual Research Briefs (1997), Center for Turbulence Research), 317-327
[5] Faldun, A. E.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J., Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. Comput. Phys., 161, 35-60 (2000) · Zbl 0972.76073
[6] Lee, L.; LeVeque, R., An immersed interface method for incompressible Navier-Stokes equations, SIAM J. Sci. Comput., 25, 832-856 (2003) · Zbl 1163.65322
[7] Linnick, N. N.; Fasel, H. H., A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains, J. Comput. Phys., 204, 157-192 (2005) · Zbl 1143.76538
[8] Yoon, H. S.; Yu, D. H.; Ha, M. Y.; Park, Y. G., Three-dimensional natural convection in an enclosure with a sphere at different vertical locations, Int. J. Heat Mass Transf., 53, 3143-3155 (2010) · Zbl 1194.80083
[9] Ren, W. W.; Shu, C.; Yang, W. M., Boundary condition-enforced immersed boundary method for thermal flow problems with Dirichlet temperature condition and its applications, Comput. Fluids, 57, 40-51 (2012) · Zbl 1365.76199
[10] Ren, W.; Shu, C.; Yang, W., An efficient immersed boundary method for thermal flow problems with heat flux boundary conditions, Int. J. Heat Mass Transf., 64, 694-705 (2013)
[11] Gulberg, Y.; Feldman, Y., On laminar natural convection inside multi-layered spherical shells, Int. J. Heat Mass Transf., 91, 908-921 (2015)
[12] Kempe, T.; Fröhlich, J., An improved immersed boundary method with direct forcing for the simulation of particle laden flows, J. Comput. Phys., 231, 3663-3684 (2012) · Zbl 1402.76143
[13] Kempe, T.; Lennartz, M.; Schwarz, S.; Fröhlich, J., Imposing the free-slip condition with a continuous forcing immersed boundary method, J. Comput. Phys., 282, 183-209 (2015) · Zbl 1351.76111
[14] Glowinski, R.; Pan, T.; Périaux, J., Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies, Comput. Methods Appl. Mech. Eng., 151, 181-194 (1998) · Zbl 0916.76052
[15] Glowinski, R.; Pan, T.; Hesla, T.; Joseph, D.; Periaux, A., A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, J. Comput. Phys., 169, 363-426 (2001) · Zbl 1047.76097
[16] Yu, Z.; Phan-Thien, N.; Fan, Y.; Tanner, R., Viscoelastic mobility problem of a system of particles, J. Non-Newton. Fluid Mech., 104, 87-124 (2002) · Zbl 1058.76592
[17] Yu, Z.; Phan-Thien, N.; Tanner, R., Dynamical simulation of sphere motion in a vertical tube, J. Fluid Mech., 518, 61-93 (2004) · Zbl 1131.76313
[18] Yu, Z., A DLM/FD method for fluid/flexible-body interactions, J. Comput. Phys., 207, 1-27 (2005) · Zbl 1177.76304
[19] Taira, K.; Colonius, T., The immersed boundary method: a projection approach, J. Comput. Phys., 225, 3121-3133 (2007)
[20] Taira, K.; Colonius, T., Effect of tip vortices in low-Reynolds-number poststall flow control, AIAA J., 47, 749-756 (2009)
[21] Samanta, A.; Appelo, D.; Colonius, T.; Nott, J.; Hall, J., Computational modeling and experiments of natural convection for a titan Montgolfiere, AIAA J., 48, 1007-1016 (2010)
[22] Yiantsios, S. G., On the distributed Lagrange multiplier/fictitious domain method for rigid-particle-laden flows: a proposition for an alternative formulation of the Lagrange multipliers, Int. J. Numer. Methods Fluids, 70, 1027-1047 (2012) · Zbl 1412.76096
[23] Choi, J.; Colonius, T.; Williams, D. R., Surging and plunging oscillations of an airfoil at low Reynolds number, J. Fluid Mech., 763, 237-253 (2015)
[24] Wang, C.; Eldredge, J. D., Strongly coupled dynamics of fluids and rigid-body systems with the immersed boundary projection method, J. Comput. Phys., 295, 87-113 (2015) · Zbl 1349.76280
[25] Kallemov, B.; Bhalla, A.; Griffith, B.; Donev, A., An immersed boundary method for rigid bodies, Commun. Appl. Math. Comput. Sci., 11, 79-141 (2016) · Zbl 1382.76191
[26] Stein, D.; Guy, R.; Thomases, B., Immersed boundary smooth extension: a high-order method for solving PDE on arbitrary smooth domains using Fourier spectral methods, J. Comput. Phys., 304, 252-274 (2016) · Zbl 1349.65656
[27] Feldman, Y.; Gelfgat, A. Y., On pressure-velocity coupled time-integration of incompressible Navier-Stokes equations using direct inversion of stokes operator or accelerated multigrid technique, Comput. Struct., 87, 710-720 (2009)
[28] Giannetti, F.; Luchini, P., Structural sensitivity of the first instability of the cylinder wake, J. Fluid Mech., 581, 167-197 (2007) · Zbl 1115.76028
[29] Gelfgat, A. Y., Three-dimensional instability of axisymmetric flows: solution of benchmark problems by a low-order finite volume method, Int. J. Numer. Methods Fluids, 54, 269-294 (2007) · Zbl 1306.76028
[30] Patankar, S. V., Numerical Heat Transfer and Fluid Flow (1980), McGraw-Hill · Zbl 0521.76003
[31] Roma, A.; Peskin, C. S.; Berger, M. J., An adaptive version of the immersed boundary method, J. Comput. Phys., 153, 509-534 (1999) · Zbl 0953.76069
[32] Uhlmann, M., An immersed boundary method with direct forcing for the simulation of particulate flows, J. Comput. Phys., 209, 448-476 (2005) · Zbl 1138.76398
[33] Beyer, R. P.; LeVeque, R. J., Analysis of a one-dimensional model for the immersed boundary method, SIAM J. Numer. Anal., 29, 332-364 (1992) · Zbl 0762.65052
[34] Gresho, P. M.; Sani, R. L., On pressure boundary conditions for the incompressible Navier-Stokes equations, Int. J. Numer. Methods Fluids, 7, 1111-1145 (1987) · Zbl 0644.76025
[35] Xiaoye, S. L.; Demmel, J. W., SuperLU DIST: a scalable distributed-memory sparse direct solver for unsymmetric linear systems, ACM Trans. Math. Softw., 29, 110-140 (2003) · Zbl 1068.90591
[36] Gelfgat, A. Y., Stability of convective flows in cavities: solution of benchmark problems by a low-order finite volume method, Int. J. Numer. Methods Fluids, 53, 485-506 (2007) · Zbl 1235.76082
[37] Perugia, Z., A field-based mixed formulation for the two-dimensional magnetostatic problem, SIAM J. Numer. Anal., 34, 2382-2391 (1997) · Zbl 0896.65087
[38] Sørensen, J. N.; Gelfgat, A. Y.; Naumov, I. V.; Mikkelsen, R. F., Experimental and numerical results on three-dimensional instabilities in a rotating disk-tall cylinder flow, Phys. Fluids, 21, Article 054102 pp. (2009) · Zbl 1183.76491
[39] Gelfgat, A. Y.; Molokov, S., Quasi-two-dimensional convection in a 3D laterally heated box in a strong magnetic field normal to main circulation, Phys. Fluids, 23, Article 034101 pp. (2011)
[40] Toselli, A.; Widlund, O. B., Domain Decomposition Methods: Algorithms and Theory, Springer Ser. Comput. Math., vol. 34 (2004), Springer
[41] Benzi, M.; Golub, G. H.; Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14, 1-137 (2005) · Zbl 1115.65034
[42] Perot, J. B., An analysis of the fractional step method, J. Comput. Phys., 108, 51-58 (1993) · Zbl 0778.76064
[43] Tuckerman, L.; Barkley, D., Bifurcation Analysis for Timesteppers (1999), Springer: Springer New York · Zbl 0961.35015
[44] Barkley, D.; Tuckerman, L. S., Stability analysis of perturbed plane Couette flow, Phys. Fluids, 11, 1187-1195 (1999) · Zbl 1147.76314
[45] Barkley, D.; Gomez, M. G.M.; Henderson, R., Three-dimensional stability analysis of flow over a backward facing step, J. Fluid Mech., 473, 167-190 (2002) · Zbl 1026.76019
[46] Marcus, P. S.; Tuckerman, L. S., Numerical simulation of spherical Couette flow. Part I. Numerical methods and steady states, J. Fluid Mech., 185, 1-30 (1987)
[47] Marcus, P. S.; Tuckerman, L. S., Numerical simulation of spherical Couette flow. Part II. Transitions, J. Fluid Mech., 185, 31-65 (1987) · Zbl 0645.76118
[48] Carmo, B. C.; Meneghini, J. R.; Sherwin, S. J., Secondary instabilities in the flow around two circular cylinders in tandem, J. Fluid Mech., 644, 395-431 (2010) · Zbl 1189.76218
[49] Carmo, B. S.; Meneghini, J. R.; Sherwin, S. J., Possible states in the flow around two circular cylinders in tandem with separations in the vicinity of the drag inversion spacing, Phys. Fluids, 22, Article 054101 pp. (2010) · Zbl 1190.76019
[50] Park, Y.; Ha, M.; Choi, C.; Park, J., Natural convection in a square enclosure with two inner circular cylinders positioned at different vertical locations, Int. J. Heat Mass Transf., 77, 501-518 (2014)
[51] Coutanceau, N.; Bouard, R., Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow, J. Fluid Mech., 79, 231-256 (1977)
[52] Dennis, S. C.; Chang, G., Numerical solutions for steady flow past a circular cylinder at Reynolds number up to 100, J. Fluid Mech., 42, 471-489 (1970) · Zbl 0193.26202
[53] Seta, T., Implicit temperature-correction-based immersed-boundary thermal lattice Boltzmann method for the simulation of natural convection, Phys. Rev. E, Article 063304 pp. (2013)
[54] Moukalled, F.; Acharya, S., Natural convection in the annulus between concentric horizontal circular and square cylinders, J. Thermophys. Heat Transf., 10, 524-531 (1996)
[55] Shu, C.; Zhu, Y. D., Efficient computation of natural convection in a concentric annulus between an outer square cylinder and an inner circular cylinder, Int. J. Numer. Methods Fluids, 38, 429-445 (2002) · Zbl 1059.76056
[56] Barkley, D., Linear analysis of the cylinder wake mean flow, Europhys. Lett., 75, 750-756 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.