×

A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains. (English) Zbl 1143.76538

Summary: Immersed boundary methods and immersed interface methods are becoming increasingly popular for the computation of unsteady flows around complex geometries using a Cartesian grid. While good results, both qualitative and quantitative, have been obtained, most of the methods rely on low-order corrections to account for the immersed boundary. The objective of the present work is to present, as an alternative, a high-order modified immersed interface method for the 2D, unsteady, incompressible Navier-Stokes equations in stream function-vorticity formulation. The method employs an explicit fourth-order Runge-Kutta time integration scheme, fourth-order compact finite-differences for computation of spatial derivatives, and a nine-point, fourth-order compact discretization of the Poisson equation for computation of the stream function. Corrections to the finite difference schemes are used to maintain high formal accuracy at the immersed boundary, as confirmed by analytical tests. To validate the method in its application to incompressible flows, several physically relevant test cases are computed, including uniform flow past a circular cylinder and Tollmien-Schlichting waves in a boundary layer.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Belov, L. Martinelli, A. Jameson, A new implicit algorithm with multigrid for unsteady incompressible flow calculations, AIAA Paper 95-0049; A. Belov, L. Martinelli, A. Jameson, A new implicit algorithm with multigrid for unsteady incompressible flow calculations, AIAA Paper 95-0049
[2] Berger, E.; Wille, R., Periodic flow phenomena, Ann. Rev. Fluid Mech., 4, 313-340 (1972)
[3] Beyer, R. P.; LeVeque, R. J., Analysis of a one-dimensional model for the immersed boundary method, SIAM J. Numer. Anal., 29, 332-364 (1992) · Zbl 0762.65052
[4] Botta, E. F.F.; Wubs, F. W., The convergence behaviour of iterative methods on severly stretched grids, Int. J. Numer. Meth. Eng., 36, 3333-3350 (1993) · Zbl 0797.65024
[5] Calhoun, D., A cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions, J. Comput. Phys., 176, 2, 231-275 (2002) · Zbl 1130.76371
[6] Coutanceau, M.; Bouard, R., Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. steady flow, J. Fluid Mech., 79, 231-256 (1977)
[7] Daube, O., Resolution of the 2D Navier-Stokes equations in velocity-vorticity form by means of an influence matrix technique, J. Comput. Phys., 103, 402-414 (1992) · Zbl 0763.76046
[8] Dennis, S. C.R.; Chang, G.-Z., Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100, J. Fluid Mech., 42, 471-489 (1970) · Zbl 0193.26202
[9] Fadlun, E. A.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J., Combined immersed boundary finite-difference methods for three-dimensional complex flow simulations, J. Comput. Phys., 161, 35-60 (2000) · Zbl 0972.76073
[10] Fasel, H. F.; Konzelmann, U., Non-parallel stability of a flat-plate boundary layer using the complete Navier-Stokes equations, J. Fluid Mech., 221, 311-347 (1990) · Zbl 0715.76019
[11] Fornberg, B., A numerical study of steady viscous .ow past a circular cylinder, J. Fluid Mech., 98, 819-855 (1980) · Zbl 0428.76032
[12] Goldstein, D.; Handler, R.; Sirovich, L., Modeling a no-slip flow boundary with an external force field, J. Comput. Phys., 105, 354-366 (1993) · Zbl 0768.76049
[13] Kloker, M., A robust high-resolution split-type compact FD scheme for spatial direct numerical simulation of boundary-layer transition, Appl. Sci. Res., 59, 353-377 (1998) · Zbl 0927.76070
[14] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16-42 (1992) · Zbl 0759.65006
[15] LeVeque, R. J.; Li, Z., The immersed interface method for elliptic equations with discontinuous coeffcients and singular sources, SIAM J. Numer. Anal., 31, 4, 1019-1044 (1994) · Zbl 0811.65083
[16] Li, Z.; Wang, C., A fast finite difference method for solving Navier-Stokes equations on irregular domains, Commun. Math. Sci., 1, 1, 180-196 (2003) · Zbl 1082.76077
[17] Li, Z.; Lai, M.-C., The immersed interface method for the Navier-Stokes equations with singular forces, J. Comput. Phys., 171, 822-842 (2001) · Zbl 1065.76568
[18] Liu, C.; Zheng, X.; Sung, C. H., Preconditioned multigrid methods for unsteady incompressible flows, J. Comput. Phys., 139, 35-57 (1998) · Zbl 0908.76064
[19] M.N. Linnick, Investigation of actuators for use in active flow control, Master’s Thesis, The University of Arizona, 1999; M.N. Linnick, Investigation of actuators for use in active flow control, Master’s Thesis, The University of Arizona, 1999
[20] L.M. Mack, Boundary-layer linear stability theory, AGARD Report 709, 1984; L.M. Mack, Boundary-layer linear stability theory, AGARD Report 709, 1984 · Zbl 0542.76086
[21] Meitz, H.; Fasel, H. F., A compact-difference scheme for the Navier-Stokes equations in vorticity-velocity formulation, J. Comput. Phys., 157, 371-403 (2000) · Zbl 0960.76059
[22] Peskin, C. S., Flow patterns around heart valves: a numerical method, J. Comput. Phys., 10, 252-271 (1972) · Zbl 0244.92002
[23] Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 220-252 (1977) · Zbl 0403.76100
[24] Peskin, C. S.; McQueen, D. M., Modeling prosthetic heart valves for numerical analysis of blood flow in the heart, J. Comput. Phys., 37, 113-132 (1980) · Zbl 0447.92009
[25] Peskin, C. S.; McQueen, D. M., A three-dimensional computational method for blood flow in the heart I. Immersed elastic fibers in a viscous incompressible fluid, J. Comput. Phys., 81, 372-405 (1989) · Zbl 0668.76159
[26] Quartapelle, L., Numerical Solution of the Incompressible Navier-Stokes Equations (1993), Birkhäuser · Zbl 0784.76020
[27] Roma, A. M.; Peskin, C. S.; Berger, M. J., An adaptive version of the immersed boundary method, J. Comput. Phys., 153, 509-534 (1999) · Zbl 0953.76069
[28] Saiki, E. M.; Biringen, S., Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method, J. Comput. Phys., 123, 450-465 (1996) · Zbl 0848.76052
[29] Schlichting, H., Boundary-Layer Theory (1979), McGraw-Hill: McGraw-Hill New York
[30] Sirovich, L., Steady gasdynamic flows, Phys. Fluids, 11, 7, 1424-1439 (1968) · Zbl 0172.26702
[31] Sonneveld, P.; Wesseling, P.; de Zeeuw, P. M., Multigrid and Conjugate Gradient Methods as Convergence Acceleration Techniques (1985), Clarendon Press: Clarendon Press Oxford, pp. 117-167 · Zbl 0577.65086
[32] D.A.v. Terzi, M.N. Linnick, J. Seidel, H.F. Fasel, Immersed boundary techniques for high-order finite-difference methods, AIAA Paper 2001-2918; D.A.v. Terzi, M.N. Linnick, J. Seidel, H.F. Fasel, Immersed boundary techniques for high-order finite-difference methods, AIAA Paper 2001-2918
[33] Tritton, D. J., Experiments on the flow past a circular cylinder at low Reynolds numbers, J. Fluid Mech., 6, 547-567 (1959) · Zbl 0092.19502
[34] Viecelli, J. A., A method for including arbitrary external boundaries in the MAC incompressible fluid computing technique, J. Comput. Phys., 4, 543-551 (1969) · Zbl 0195.55301
[35] Viecelli, J. A., A computing method for incompressible flow bounded by moving walls, J. Comput. Phys., 8, 119-143 (1971) · Zbl 0222.76033
[36] Waldén, J., On the approximation of singular source terms in differential equations, Numer. Meth. Partial Differential Equations, 15, 4, 503-520 (1999) · Zbl 0938.65112
[37] Wiegmann, A.; Bube, K., The explicit-jump immersed interface method: finite difference methods for pdes with piecewise smooth solutions, SIAM J. Numer. Anal., 37, 3, 827-862 (2000) · Zbl 0948.65107
[38] P.M. de Zeeuw, Acceleration of iterative methods by coarse grid corrections, Ph.D. Thesis, University of Amsterdam, 1997; P.M. de Zeeuw, Acceleration of iterative methods by coarse grid corrections, Ph.D. Thesis, University of Amsterdam, 1997
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.