×

A high-order multi-zone cut-stencil method for numerical simulations of high-speed flows over complex geometries. (English) Zbl 1349.76467

Summary: In this paper, we present a method for performing uniformly high-order direct numerical simulations of high-speed flows over arbitrary geometries. The method was developed with the goal of simulating and studying the effects of complex isolated roughness elements on the stability of hypersonic boundary layers. The simulations are carried out on Cartesian grids with the geometries imposed by a third-order cut-stencil method. A fifth-order hybrid weighted essentially non-oscillatory scheme was implemented to capture any steep gradients in the flow created by the geometries and a third-order Runge-Kutta method is used for time advancement. A multi-zone refinement method was also utilized to provide extra resolution at locations with expected complex physics. The combination results in a globally fourth-order scheme in space and third order in time. Results confirming the method’s high order of convergence are shown. Two-dimensional and three-dimensional test cases are presented and show good agreement with previous results. A simulation of Mach 3 flow over the logo of the Ubuntu Linux distribution is shown to demonstrate the method’s capabilities for handling complex geometries. Results for Mach 6 wall-bounded flow over a three-dimensional cylindrical roughness element are also presented. The results demonstrate that the method is a promising tool for the study of hypersonic roughness-induced transition.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76K05 Hypersonic flows
76N15 Gas dynamics (general theory)

Software:

AMRCLAW
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Zhong, X.; Wang, X., Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers, Annu. Rev. Fluid Mech., 44, 527-561 (2012) · Zbl 1366.76043
[2] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-261 (2005) · Zbl 1117.76049
[3] Peskin, C. S., Flow patterns around heart valves: a numerical method, J. Comput. Phys., 10, 252-271 (1972) · Zbl 0244.92002
[4] Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 220-252 (1977) · Zbl 0403.76100
[5] Goldstein, D.; Handler, R.; Sirovich, L., Modeling a no-slip flow boundary with an external force field, J. Comput. Phys., 105, 354-366 (1993) · Zbl 0768.76049
[6] Mohd-Yusof, J., Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries, (Annual Research Briefs 1997 (1997), Center for Turbulence Research), 317-327
[7] Beyer, R., A computational model of the cochlea using the immersed boundary method, J. Comput. Phys., 98, 145-162 (1992) · Zbl 0744.76128
[8] Verzicco, R.; Fatica, M.; Iaccarino, G.; Khalighi, B.; Moin, P., Large eddy simulation of a road vehicle with drag-reduction devices, AIAA J., 40, 2447-2455 (2002)
[9] Hu, W.-F.; Kim, Y.; Lai, M.-C., An immersed boundary method for simulating the dynamics of three-dimensional axisymmetric vesicles in Navier-Stokes flows, J. Comput. Phys., 257, 670-686 (2014) · Zbl 1349.76612
[10] Fedkiw, R. P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 457-492 (1999) · Zbl 0957.76052
[11] Fedkiw, R. P.; Aslam, T.; Xu, S., The ghost fluid method for deflagration and detonation discontinuities, J. Comput. Phys., 154, 393-427 (1999) · Zbl 0955.76071
[12] Clarke, D. K.; Hassan, H. A.; Salas, M. D., Euler calculations for multielement airfoils using Cartesian grids, AIAA J., 24, 353-358 (1986) · Zbl 0587.76095
[13] Udaykumar, H. S.; Mittal, R.; Shyy, W., Computation of solid-liquid phase fronts in the sharp interface limit on fixed grids, J. Comput. Phys., 153, 535-574 (1999) · Zbl 0953.76071
[14] Udaykumar, H. S.; Mittal, R.; Rampunggoon, P.; Khanna, A., A sharp interface Cartesian grid method for simulating flows with complex moving boundaries, J. Comput. Phys., 174, 345-380 (2001) · Zbl 1106.76428
[15] Udaykumar, H. S.; Mittal, R.; Rampunggoon, P., Interface tracking finite volume method for complex solid-fluid interactions on fixed meshes, Commun. Numer. Methods Eng., 18, 89-97 (2002) · Zbl 1093.76543
[16] Ye, T.; Mittal, R.; Udaykumar, H.; Shyy, W., An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries, J. Comput. Phys., 156, 209-240 (1999) · Zbl 0957.76043
[17] Berger, M. J.; LeVeque, R. J., Stable boundary conditions for Cartesian grid calculations, Comput. Syst. Eng., 1, 305-311 (1990)
[18] Causon, D.; Ingram, D.; Mingham, C.; Yang, G.; Pearson, R., Calculation of shallow water flows using a Cartesian cut cell approach, Adv. Water Resour., 23, 545-562 (2000)
[19] Mittal, R.; Utturkar, Y.; Udaykumar, H., Computational modeling and analysis of biomimetic flight mechanisms, (40th AIAA Aerospace Sciences Meeting & Exhibit (2002)), AIAA Paper 2002-0865
[20] Zhang, J.; Ni, M.-J., A consistent and conservative scheme for MHD flows with complex boundaries on an unstructured Cartesian adaptive system, J. Comput. Phys., 256, 520-542 (2014) · Zbl 1349.76411
[21] Berger, M. J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 484-512 (1984) · Zbl 0536.65071
[22] Berger, M. J.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82, 64-84 (1989) · Zbl 0665.76070
[23] Berger, M. J.; LeVeque, R. J., Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems, SIAM J. Numer. Anal., 35, 2298-2316 (1998) · Zbl 0921.65070
[24] Roma, A. M.; Peskin, C. S.; Berger, M. J., An adaptive version of the immersed boundary method, J. Comput. Phys., 153, 509-534 (1999) · Zbl 0953.76069
[25] Griffith, B. E.; Hornung, R. D.; McQueen, D. M.; Peskin, C. S., An adaptive, formally second order accurate version of the immersed boundary method, J. Comput. Phys., 223, 10-49 (2007) · Zbl 1163.76041
[26] Sambasivan, S. K.; Udaykumar, H., Sharp interface simulations with local mesh refinement for multi-material dynamics in strongly shocked flows, Comput. Fluids, 39, 1456-1479 (2010) · Zbl 1245.76111
[27] Lee, P.; Griffith, B. E.; Peskin, C. S., The immersed boundary method for advection-electrodiffusion with implicit timestepping and local mesh refinement, J. Comput. Phys., 229, 5208-5227 (2010) · Zbl 1346.76109
[28] Duan, L.; Wang, X.; Zhong, X., A high-order cut-cell method for numerical simulation of hypersonic boundary-layer instability with surface roughness, J. Comput. Phys., 229, 7207-7237 (2010) · Zbl 1425.76119
[29] Shen, C.; Qiu, J.-M.; Christlieb, A., Adaptive mesh refinement based on high order finite difference WENO scheme for multi-scale simulations, J. Comput. Phys., 230, 3780-3802 (2011) · Zbl 1218.65085
[30] Jiang, G.; Shu, C., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065
[31] Ren, Y.-X.; Liu, M.; Zhang, H., A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws, J. Comput. Phys., 192, 365-386 (2003) · Zbl 1037.65090
[32] Henrick, A. K.; Aslam, T. D.; Powers, J. M., Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points, J. Comput. Phys., 207, 542-567 (2005) · Zbl 1072.65114
[33] Zhong, X., High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition, J. Comput. Phys., 144, 662-709 (1998) · Zbl 0935.76066
[34] Marxen, O.; Iaccarino, G., An immersed boundary method for numerical simulations of boundary layers with roughness, (Annual Research Briefs 2008 (2008), Center for Turbulence Research), 89-100
[35] von Terzi, D. A.; Linnick, M. N.; Seidel, J.; Fasel, H. F., Immersed boundary techniques for high-order finite-difference methods, (15th AIAA Computational Fluid Dynamics Conference (2001)), AIAA Paper 2001-2918
[36] Xu, S.; Martin, M., Assessment of inflow boundary conditions for compressible turbulent boundary layers, Phys. Fluids, 16, 2623-2639 (2004) · Zbl 1186.76582
[37] Poinsot, T.; Lele, S., Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., 101, 104-129 (1992) · Zbl 0766.76084
[38] Williamson, C., Vortex dynamics in the cylinder wake, Annu. Rev. Fluid Mech., 28, 477-539 (1996)
[39] Canonical Ltd, Ubuntu (2014)
[40] Schneider, S. P., Fabrication and testing of the Purdue Mach-6 quiet-flow Ludwieg tube, (38th Aerospace Sciences Meeting & Exhibit (2000)), AIAA Paper 2000-0295
[41] Wheaton, B. M.; Schneider, S. P., Roughness-induced instability in a laminar boundary layer at Mach 6, (48th AIAA Aerospace Sciences Meeting (2010)), AIAA Paper 2010-1574
[42] Bartkowicz, M. D.; Subbareddy, P.; Candler, G., Numerical simulations of roughness induced instability in the Purdue Mach 6 wind tunnel, (40th Fluid Dynamics Conference and Exhibit (2010)), AIAA Paper 2010-4723
[43] Wheaton, B. M.; Bartkowicz, M. D.; Subbareddy, P.; Schneider, S.; Candler, G., Roughness-induced instabilities at Mach 6: a combined numerical and experimental study, (41st AIAA Fluid Dynamics Conference and Exhibit (2011)), AIAA Paper 2011-3248
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.