×

Three-dimensional viscous finite element formulation for acoustic fluid-structure interaction. (English) Zbl 1194.76108

Summary: A three-dimensional viscous finite element model is presented in this paper for the analysis of the acoustic fluid-structure interaction systems including, but not limited to, the cochlear-based transducers. The model consists of a three-dimensional viscous acoustic fluid medium interacting with a two-dimensional flat structure domain. The fluid field is governed by the linearized Navier-Stokes equation with the fluid displacements and the pressure chosen as independent variables. The mixed displacement/pressure based formulation is used in the fluid field in order to alleviate the locking in the nearly incompressible fluid. The structure is modeled as a Mindlin plate with or without residual stress. The Hinton-Huang’s 9-noded Lagrangian plate element is chosen in order to be compatible with 27/4 u/p fluid elements. The results from the full 3D FEM model are in good agreement with experimental results and other FEM results including Beltman’s thin film viscoacoustic element W. M. Beltman, P. J. M. Van der Hoogt, R. M. E.J. Spiering and H. Tijdeman [J. Sound Vib. 216, No. 1, 159–185 (1998)] and two and half dimensional inviscid elements A. A. Parthasarathi, K. Grosh and A. L. Nuttall [J. Acoust. Soc. Am. 107, 474–485 (2000)]. Although it is computationally expensive, it provides a benchmark solution for other numerical models or approximations to compare to besides experiments and it is capable of modeling any irregular geometries and material properties while other numerical models may not be applicable.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76Q05 Hydro- and aero-acoustics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bathe, K. J., Formulation of the Finite Element Method - Linear Analysis in Solid and Structural Mechanics (1996), Prentice-Hall
[2] Beltman, W. M.; Van der Hoogt, P. J.M.; Spiering, R. M.E. J.; Tijdeman, H., Implementation and experimental validation of a new viscothermal acoustic finite element for acousto-elastic problems, J. Sound Vib., 216, 1, 159-185 (1998)
[3] Beyer, R. B., A computational model of the cochlea using the immersed boundary method, J. Comput. Phys., 98, 145-162 (1992) · Zbl 0744.76128
[4] Böhnke, F.; Arnold, W., 3D-finite element model of the human cochlea including fluid-structure couplings, ORL, 61, 305-310 (1999)
[5] Bossart, R.; Joly, N.; Bruneau, M., Hybrid numerical and analytical solutions for acoustic boundary problems in thermo-viscous fluids, J. Sound Vib., 263, 1, 69-84 (2003)
[6] Dallos, P.; Popper, A.; Fay, R., The Cochlea (1996), Springer-Verlag: Springer-Verlag New York
[7] Everstine, G. C., A symmetric potential formulation for fluid-structure interaction, J. Sound Vib., 79, 1, 157-160 (1981)
[8] Figueroa, C. A.; Vignon-Clementel, I. E.; Jansen, K. E.; Hughes, T. J.R.; Taylor, C. A., A coupled momentum method for modeling blood flow in three-dimensional deformable arteries, Comput. Methods Appl. Mech. Engrg., 195, 41-43, 5685-5706 (2006) · Zbl 1126.76029
[9] Gan, R. Z.; Reeves, B. P.; Wang, X., Modeling of sound transmission from ear canal to cochlea, Ann. Biomed. Engrg., 35, 12, 2180-2195 (2007)
[10] Givelberg, E.; Bunn, J., A comprehensive three-dimensional model of the cochlea, J. Comput. Phys., 191, 377-391 (2003) · Zbl 1024.92005
[11] Hamdi, M. A.; Ousset, Y.; Verchery, G., A displacement method for analysis of vibrations of coupled fluid-structure systems, Int. J. Numer. Methods Engrg., 13, 1, 139-150 (1978) · Zbl 0384.76060
[12] Hinton, E.; Huang, H. C., A family of quadrilateral Mindlin plate elements with substitute shear strain fields, Comput. Struct., 23, 3, 409-431 (1986)
[13] Holmes, M. H.; Cole, J. D., Cochlear mechanics: analysis for a pure tone, J. Acoust. Soc. Am., 76, 767-778 (1984) · Zbl 0543.73126
[14] Hughes, T. J.R., In the Finite Element Method (1987), Dover Publications, Inc., (Chapter 4)
[15] Kiefling, L.; Feng, G. C., Fluid-structure finite-element vibrational analysis, AIAA J., 14, 2, 199-203 (1976) · Zbl 0325.76017
[16] K.M. Lim, Physical and Mathematical Cochlear Models, Ph.D. Thesis, Stanford University, 2000.; K.M. Lim, Physical and Mathematical Cochlear Models, Ph.D. Thesis, Stanford University, 2000.
[17] Lim, K. M.; Steele, C. R., A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method, Hear. Res., 170, 1-2, 190-205 (2002)
[18] Morand, H.; Ohayon, R., Substructure variational analysis of the vibrations of coupled fluid structure systems – finite-element results, Int. J. Numer. Methods Engrg., 14, 5, 741-755 (1979) · Zbl 0402.73052
[19] Olson, L. G.; Bathe, K. J., A study of displacement-based finite elements for calculating frequencies of fluid and fluid-structure systems, Nucl. Engrg. Des., 76, 137-151 (1983)
[20] Onate, E.; Zienkiewicz, O. C.; Suarez, B.; Taylor, R. L., A general methodology for deriving shear constrained Reissner-Mindlin plate elements, Int. J. Numer. Methods Engrg., 33, 2, 345-367 (1992) · Zbl 0761.73111
[21] Parthasarathi, A. A.; Grosh, K.; Nuttall, A. L., Three-dimensional numerical modeling for global cochlear dynamics, J. Acoust. Soc. Am., 107, 474-485 (2000)
[22] Steele, C. R.; Taber, L. A., Comparison of WKB calculations and experimental results for three-dimensional cochlear models, J. Acoust. Soc. Am., 65, 1007-1018 (1979) · Zbl 0407.76041
[23] Wang, X. D.; Bathe, K. J., Displacement pressure based mixed finite element formulations for acoustic fluid-structure interaction problems, Int. J. Numer. Methods Engrg., 40, 11, 2001-2017 (1997) · Zbl 0886.73073
[24] Watts, L., The mode-coupling Liouville-Green approximation for a two-dimensional cochlear model, J. Acoust. Soc. Am., 108, 5, 2266-2271 (2000)
[25] White, R. D.; Grosh, K., Microengineered hydromechanical cochlear model, Proc. Natl. Acad. Sci. USA, 102, 5, 1296-1301 (2005)
[26] White, R. D.; Littrell, R.; Grosh, K., Copying the cochlea, micromachined biomimetic acoustic sensors, (Chang, Fu-Kuo, Structural Health Monitoring 2007, Quantification, Validation and Implementation (2007), DesTECH Publications, Inc.), 1447-1454, volume 2 edition
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.